High-Throughput Gene Mutagenesis Screening Using Base Editing.

Methods Mol Biol

Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada.

Published: May 2022

Base editing is a CRISPR-Cas9 genome engineering tool that allows programmable mutagenesis without the creation of double-stranded breaks. Here, we describe the design and execution of large-scale base editing screens using the Target-AID base editor in yeast. Using this approach, thousands of sites can be mutated simultaneously. The effects of these mutations on fitness can be measured using a pooled growth competition assay followed by DNA sequencing of gRNAs as barcodes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2257-5_19DOI Listing

Publication Analysis

Top Keywords

base editing
12
high-throughput gene
4
gene mutagenesis
4
mutagenesis screening
4
base
4
screening base
4
editing base
4
editing crispr-cas9
4
crispr-cas9 genome
4
genome engineering
4

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

The new HLA-C*12:02:55 allele showed one synonymous nucleotide difference compared to the HLA-С*12:02:02:01 allele in codon 134.

View Article and Find Full Text PDF

The new HLA-B*35:01:80 allele showed one synonymous nucleotide difference compared to the HLA-B*35:01:01:01 allele in codon 137.

View Article and Find Full Text PDF

Advances in cryo-electron microscopy (cryoEM) for structure-based drug discovery.

Expert Opin Drug Discov

January 2025

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.

Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!