Ferroptosis is a caspase-independent form of regulated cell death strongly linked to the accumulation of reactive lipid hydroperoxides. Lipid hydroperoxides are neutralized in cells by glutathione peroxidase 4 (GPX4) and inhibitors of GPX4 are potent ferroptosis inducers with therapeutic potential in cancer. Here we report that siRNA-mediated silencing of the AMPK-related kinase NUAK2 suppresses cell death by small-molecule inducers of ferroptosis but not apoptosis. Mechanistically we find that NUAK2 suppresses the expression of GPX4 at the RNA level and enhances ferroptosis triggered by GPX4 inhibitors in a manner independent of its kinase activity. NUAK2 is amplified along with MDM4 in a subset of breast cancers, particularly the claudin-low subset, suggesting that this may predict vulnerability to GPX4 inhibitors. These findings identify a novel pathway regulating GPX4 expression as well as ferroptotic sensitivity with potential as a biomarker of breast cancer patients that might respond to GPX4 inhibition as a therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076840 | PMC |
http://dx.doi.org/10.1038/s41420-022-01044-y | DOI Listing |
Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re- expressed or co-opted during glioma tumorigenesis.
View Article and Find Full Text PDFAnticancer Res
July 2024
Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea;
Background/aim: NUAK family kinase 2 (NUAK2) is a promising target for cancer therapeutics due to its reported role in protein phosphorylation, a critical process in cancer cell survival, proliferation, invasion, and senescence. This study aimed to identify novel inhibitors that disrupt NUAK2 activity. We have already identified two KRICT Hippo kinase inhibitor (KHKI) compounds, such as KHKI-01128 and KHKI-01215.
View Article and Find Full Text PDFEnviron Mol Mutagen
July 2023
Department of Medical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Circular RNAs (circRNAs), including circ_0000033, were shown to be abnormally expressed in breast cancer (BC) and play an important regulatory function in the development of this cancer. This study aimed to investigate the action and mechanism of circ_0000033 in BC carcinogenesis. Specifically, levels of genes and proteins were analyzed using quantitative real-time PCR (qRT-PCR) and western blotting.
View Article and Find Full Text PDFFront Pharmacol
April 2023
Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
NUAKs promote myosin light chain phosphorlyation, actin organization, proliferation and suppression of cell death in non-muscle cells, which are critical for smooth muscle contraction and growth. In benign prostatic hyperplasia (BPH), contraction and growth in the prostate drive urethral obstruction and voiding symptoms. However, a role of NUAKs in smooth muscle contraction or prostate functions are unknown.
View Article and Find Full Text PDFCell Death Discov
May 2022
Cancer Signaling & Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
Ferroptosis is a caspase-independent form of regulated cell death strongly linked to the accumulation of reactive lipid hydroperoxides. Lipid hydroperoxides are neutralized in cells by glutathione peroxidase 4 (GPX4) and inhibitors of GPX4 are potent ferroptosis inducers with therapeutic potential in cancer. Here we report that siRNA-mediated silencing of the AMPK-related kinase NUAK2 suppresses cell death by small-molecule inducers of ferroptosis but not apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!