Metastatic cancers can be highly heterogeneous, show large patient variability and are typically hard to treat due to chemoresistance. Personalized therapies are therefore needed to suppress tumor growth and enhance patient's quality of life. Identifying appropriate patient-specific therapies remains a challenge though, due mainly to non-physiological in vitro culture systems. Therefore, more complex and physiological in vitro human cancer microenvironment tools could drastically aid in development of new therapies. We developed a plasma-modified, electro-spun 3D scaffold (PP-3D-S) that can mimic the human cancer microenvironment for customized-cancer therapeutic screening. The PP-3D-S was characterized for optimal plasma-modifying treatment and scaffolds morphology including fiber diameter and pore size. PP-3D-S was then seeded with human fibroblasts to mimic a stromal tissue layer; cell adhesion on plasma-modified poly (lactic acid), PLA, electrospun mats vastly exceeded that on untreated controls. The cell-seeded scaffolds were then overlaid with alginate/gelatin-based hydrogel embedded with MDA-MB231 human breast cancer cells, representing a tumor-tissue interface. Among three different plasma treatments, we found that NH plasma promoted the most tumor cell migration to the scaffold surfaces after 7 days of culture. For all treated and non-treated mats, we observed a significant difference in tumor cell migration between small-sized and either medium- or large-sized scaffolds. In addition, we found that the PP-3D-S was highly comparable to the standard Matrigel® migration assays in two different sets of doxorubicin screening experiments, where 75% reduction in migration was achieved with 0.5 μM doxorubicin for both systems. Taken together, our data indicate that PP-3D-S is an effective, low-cost, and easy-to-use alternate 3D tumor migration model which may be suitable as a physiological drug screening tool for personalized medicine against metastatic cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2021.112566 | DOI Listing |
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Cardiovascular Research Center, New York University Langone Health, New York University Grossman School of Medicine. (A.A.C.N., J.M.D., K.J.M.).
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear.
View Article and Find Full Text PDFClin Kidney J
January 2025
Department of Medicine, Division of Nephrology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Background: Although kidney biopsy is definitive for the diagnosis of acute interstitial nephritis (AIN) and acute tubular necrosis (ATN), its invasiveness limits its use. We aimed to identify urine biomarkers for differentiating AIN and ATN and to predict the response of patients with AIN to steroid treatment.
Methods: In this prospective cohort study, biopsy-proven ATN ( = 34) and AIN ( = 55) were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!