Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, autonomous systems have received considerable attention amongst research communities and academicians. Unmanned aerial vehicles (UAVs) find useful in several applications like transportation, surveillance, disaster management, and wildlife monitoring. One of the important issues in the UAV system is energy efficiency, which can be resolved by the use of clustering approaches. In addition, high resolution remote sensing images need to be classified for effective decision making using deep learning (DL) models. Though several models are available in the literature, only few approaches have focused on the clustering and classification processes in UAV networks. In this aspect, this paper designs a novel metaheuristic with an adaptive neuro-fuzzy inference system for decision making named MANFIS-DM technique on autonomous UAV systems. The proposed MANFIS-DM technique intends to effectively organize the UAV networks into clusters and then classify the images into appropriate class labels. The proposed MANFIS-DM technique encompasses two major stages namely quantum different evolution based clustering (QDE-C) technique and ANFIS based classification technique. Primarily, the QDE-C technique involves the design of a fitness function involving three parameters namely average distance, distance to UAVs, and UAV degree. Besides, the image classification model involves a set of subprocesses namely DenseNet based feature extraction, Adadelta based hyperparameter optimization, and ANFIS based classification. The design of QDE-C algorithm with classification model for autonomous UAV systems show the novelty of the work. The experimental result analysis of the MANFIS-DM method is carried out against benchmark dataset and the results ensured the enhanced performance of the MANFIS-DM technique over the other methods with the maximum accu of 99.13%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2022.04.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!