Physiological changes were explored in fatty acids (FA) and carbohydrate (CHO) composition in the shredder Calamoceras marsupus larvae (Trichoptera) and leaf litter (C. marsupus food) exposed to copper and uranium under natural and experimental conditions. We measured FA and CHO content in leaf litter and larvae specimens from reference and impacted streams, and exposed for 5 weeks to four realistic environmental concentrations of copper (35 μg L and 70 μg L) and uranium (25 μg L and 50 μg L). Regarding FA, (1) leaf litter had a reduced polyunsaturated FA (PUFA) content in metal treatments, s (14 to 33% of total FA), compared to natural conditions (≥39% of total FA). Leaf litter exposed to uranium also differed in saturated FA (SFA) composition, with lower values in natural conditions and higher values under low uranium concentrations. (2) C. marsupus had/showed low PUFA content under Cu and U exposure, particularly in high uranium concentrations. Detritivores also decreased in PUFA under exposure to both metals, particularly in high uranium concentrations. On the other hand, (1) microorganisms of the biofilm colonizing leaf litter differed in CHO composition between natural (impacted and reference) and experimental conditions, with glucose and galactose being consistently the most abundant sugars, found in different amounts under copper or uranium exposure; (2) CHO of detritivores showed similar high galactose and fucose concentrations in contaminated streams and high copper treatments, whereas low copper treatment showed distinct CHO profiles, with higher mannose, glucose, arabinose, and fucose concentrations. Our study provides evidence of metal exposure effects on FA and CHO contents at different trophic levels, which might alter the quality of food flow in trophic webs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155613 | DOI Listing |
Transl Anim Sci
November 2024
Department of Animal Sciences, Greensboro, NC, 27411, USA.
Heat stress (HS) poses a significant challenge to the United States swine industry. Sows and their piglets are particularly vulnerable to HS, as the periparturient phase is characterized by heightened metabolism and increased oxidative stress and inflammation. The study examined the effects of using conductive electronic cooling pads (ECP) and dietary supplementation with 4% Moringa (M) leaf powder on controlling oxidative stress and inflammation caused by HS in sows and their piglets.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environment and Forest Resources, College of Agriculture and Life Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea. Electronic address:
Enhancing the strength of forest carbon sinks is critical in the wake of the accelerating global climate change and intensifying greenhouse effect. However, the regional patterns and environmental controls of forest litter, a major carbon pool and entry pathway from tree-to-soil systems, remain uncertain. Herein, we consolidated up to a decade of data from six ecological studies (totaling 28 stands) conducted across South Korea between 1999 and 2022 (spanning 23 years) to examine variations in total and component-based litterfall with geo-topography and climate.
View Article and Find Full Text PDFEcology
January 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , from accumulated snow sediment sample. , on leaf spots of . , on submerged decaying wood in sea water, on , as endophyte from healthy leaves of .
View Article and Find Full Text PDFEcol Lett
January 2025
Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, UK.
Trees affect organic matter decomposition through allocation of recently fixed carbon belowground, but the magnitude and direction of this effect may depend on substrate type and decomposition stage. Here, we followed mass loss, chemical composition and fungal colonisation of leaf and root litters incubated in mountain birch forests over 4 years, in plots where belowground carbon allocation was severed by tree girdling or in control plots. Initially, girdling stimulated leaf and root litter mass loss by 12% and 22%, respectively, suggesting competitive release of saprotrophic decomposition when tree-mediated competition by ectomycorrhizal fungi was eliminated (Gadgil effect).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!