Phenolic phytochemicals are a group of organic compounds with potent antioxidant features but can also act as powerful pro-oxidants. These characteristics are effective in reducing metastatic potential in cancer cells, and this effect has been associated with reactive oxygen species (ROS). Methyl vanillate (MV) and its dimer, methyl divanillate (DMV), are potent antioxidants. In the present study, we investigated the effects of MV and DMV on breast cancer cell lines MCF-7 and MDA-MB-231 and compared the results using the non-tumor cell line HB4a. Our results indicated that the compounds performed a pro-oxidant action, increasing the generation of ROS. DMV decreased the viability cell, showing a higher apoptotic effect and inhibition of proliferation than MV on both cell lines, with significant differences between groups (p < 0.05). Some modulation of NOX4, NOX5, and DUOX were observed, but the results did not correlate with the intracellular production of ROS. The dimer showed more effectivity and pro-oxidant effect than MV, impacting cell line MCF-7 in higher extension than MDA-MB-231. In conclusion, and corroborating with reported works, the dimerization of natural phenolic compounds was associated with improved beneficial biological effects as a potential cytotoxic agent to tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2022.109962DOI Listing

Publication Analysis

Top Keywords

methyl vanillate
8
breast cancer
8
cancer cells
8
cell lines
8
dimerization methyl
4
vanillate improves
4
improves breast
4
cells pro-oxidant
4
pro-oxidant phenolic
4
phenolic phytochemicals
4

Similar Publications

Background: An increasing amount of research demonstrates that metabolic disorders are related to rosacea. However, the correlations and causal relationships among them remain unknown.

Methods: We conducted not only forward 2-sample MR (Mendelian randomization) analyses but also reverse MR analyses which showed positive results in the forward MR analysis.

View Article and Find Full Text PDF

NASH (non-alcoholic steatohepatitis) is a severe liver disease characterized by hepatic chronic inflammation that can be associated with the gut microbiota. In this study, we explored the therapeutic effect of extract (GPE), a Chinese herbal extract, on methionine- and choline-deficient (MCD) diet-induced NASH mice. Based on the peak area, the top ten compounds in GPE were hydroxylinolenic acid, rutin, hydroxylinoleic acid, vanillic acid, methyl vanillate, quercetin, pheophorbide A, protocatechuic acid, aurantiamide acetate, and iso-rhamnetin.

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, methyl vanillate, CAS Registry Number 3943-74-6.

Food Chem Toxicol

March 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.

View Article and Find Full Text PDF

Rice contains many bioactive compounds that perform various biological activities. Some of these compounds have been identified as α-glucosidase and α-amylase inhibitors, including guaiacol, vanillin, methyl vanillate, vanillic acid, syringic acid, and 2-pentyl furan. In this study, we assessed the growth rate, photosynthetic pigment content, phenolic content, and flavonoid content of gamma-irradiated Thai pigmented rice.

View Article and Find Full Text PDF

Bimetallic polyoxometalates catalysts for efficient lignin depolymerization: Unlocking valuable aromatic compounds from renewable feedstock.

Int J Biol Macromol

December 2023

Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China; Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin City, Jilin Province, PR China. Electronic address:

Lignin, a complex and abundant polymer present in lignocellulosic biomass, holds immense potential as a renewable source for the production of valuable aromatic compounds. However, the efficient depolymerization of lignin into these compounds remains a formidable challenge. Here, we present a promising solution by harnessing polyoxometalates (POMs) catalysts, which exhibit improved catalytic performance and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!