This paper reports the speciation of Cs, Am, Sr and Pu in the soil samples of the Experimental Field (EF). The EF is a testing ground of the Semipalatinsk nuclear weapons test site used for surface and atmospheric tests. The study revealed low mobility of artificial radionuclides in the EF site soils. The revealed high radionuclide concentrations in soil mainly exist in tightly bound form. On average, the content of the tightly bound form of Cs was revealed to be below 98%, that of Sr - 94%, Am - 89%, and Pu - 98%. The radionuclides occurrence forms were analyzed in correlation with the physicochemical parameters of soils. Reliable relationships have been established between the content of carbonates and the content of the exchangeable, acid-soluble and strongly bound Sr forms in soils, as well as the content of the water-soluble salts and the content of the strongly bound Pu form in the soil. Similarly, we compared the distributions of the radionuclides speciation and their stable isotopes with their analogous elements in the soil. Unlike Cs and Sr, which are in a tightly bound form in the soils of the Experimental Field site, the main content of soil "competitors" of the Cs radionuclide - K and Cs is observed in an exchange form, less significantly in an acid-soluble form. The alkaline earth metals (analogous elements for Sr) are mainly observed as a composition of the exchangeable and acid-soluble forms. The results allow to conclude that there is no equilibrium distribution of the physicochemical forms of radionuclides introduced into the soil and the natural presence forms of their stable analogs in the soil. Such equilibrium distribution can only be achieved at a complete isotopic exchange in phases and soil components, which under the conditions of the Experimental Field is not possible in the near future. It can be concluded that the behavior of the studied radionuclides in soils is stipulated by the initial form delivered by the fallouts from tests at the EF site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2022.106867DOI Listing

Publication Analysis

Top Keywords

bound form
16
experimental field
12
tightly bound
12
artificial radionuclides
8
radionuclides soils
8
test site
8
soil
8
exchangeable acid-soluble
8
analogous elements
8
equilibrium distribution
8

Similar Publications

Feasible approaches for arsenic speciation analysis in foods for dietary exposure assessment: a review.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China.

Arsenic (As) occurs naturally in different forms and oxidation states. Amongst them, inorganic arsenic (iAs) is classified as both genotoxic and carcinogenic whilst other organic arsenic species are considered less toxic. As in rice is mainly present in the form of iAs which therefore poses a health risk to populations that consume rice as a staple food.

View Article and Find Full Text PDF

Excitons, Coulomb-driven bound states of electrons and holes, are typically composed of integer charges. However, in bilayer systems influenced by charge fractionalization, a more interesting form of interlayer exciton can emerge, in which pairing occurs between constituents that carry fractional charges. Despite numerous theoretical predictions for these fractional excitons, their experimental observation has remained unexplored.

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Using cryogenic electron microscopy (cryo-EM), we determine the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. In the autoinhibited state, the cytosolic regulatory (R) domain plugs into the transmembrane substrate-binding site and extends into the cytosol to form a composite ATP-binding site at the surface of nucleotide-binding domain 2.

View Article and Find Full Text PDF

The complete conversion of dinitrogen to ammonia mediated by a side-on N-bound carbene-beryllium complex, [NHC-Be(η-N)] has been studied considering both the symmetric and unsymmetric pathways. -heterocyclic carbenes complexed with Be(η-N) moieties were considered substrates in our study. We found that two mechanistic pathways were possible for the reduction of dinitrogen to form ammonia.

View Article and Find Full Text PDF

The anti-tumor effect of the IFNγ/Fas chimera expressed on CT26 tumor cells.

Anim Cells Syst (Seoul)

January 2025

Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.

Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!