Detecting ultralow concentrations of anionic analytes in solution by surface-enhanced Raman spectroscopy (SERS) remains challenging due to their low affinity for SERS substrates. Two strategies were examined to enable , liquid phase detection using 5(6)-carboxyfluorescein (5(6)-FAM) as a model analyte: functionalization of a gold nanopillar substrate with cationic cysteamine self-assembled monolayer (CA-SAM) and electrokinetic preconcentration (EP-SERS) with potentials ranging from 0 to +500 mV. The CA-SAM did not enable detection without an applied field, likely due to insufficient accumulation of 5(6)-FAM on the substrate surface limited by passive diffusion. 5(6)-FAM could only be reliably detected with an applied electric field with the charged molecules driven by electroconvection to the substrate surface and the SERS intensity following the Langmuir adsorption model. The obtained limits of detection (LODs) with an applied field were 97.5 and 6.4 nM on bare and CA-SAM substrates, respectively. For the CA-SAM substrates, both the ligand and analyte displayed an ∼15-fold signal enhancement with an applied field, revealing an additional enhancement due to charge-transfer resonance taking place between the metal and 5(6)-FAM that improved the LOD by an order of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c02934DOI Listing

Publication Analysis

Top Keywords

applied field
12
sers substrates
8
electrokinetic preconcentration
8
substrate surface
8
ca-sam substrates
8
organic anion
4
detection
4
anion detection
4
detection functionalized
4
sers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!