Peach (Prunus persica (L.) Batsch) is one of the most popular fruits grown in Northern China. In July 2021, a fruit rot outbreak on the peach cultivar "Yonglian Sweet" occurred after unusual rains in Baoding, Hebei Province, China. Sixty peach trees from three orchards were assessed, and a 30% disease incidence was estimated. The disease initiated as a small concave spot on the fruit surface expanding circularly rotting the fruit (3-5 cm deep) with the appearance of grayish-white mycelia (Figure S1A). The infected fruit did not disintegrate but turned light brown. To identify the pathogen, 20 infected fruits were collected, and fruit tissues from lesion margins were inoculated on the potato dextrose agar (PDA) medium. A total of 15 fungal pure cultures with highly similar morphological characteristics were obtained by the hyphal-tipping method. The fungal culture formed smooth-edged colonies of extensive, dense, wooly aerial mycelium, with color changing from sienna to luteous, and to grayish-white along the radius of colonies (Figure S1B) Chlamydospores were extensive and developed micro-sclerotia after 20 d of growth. The conidiophore produced three branches in a "broom" shape, with the primary branch ranging 7.5-25.0 μm in length, the secondary branch 5.5-15.5 μm, and the tertiary branch 10-12.5 μm (N = 30). The top of the tertiary branch tapered and produced conidia. Conidia were colorless and culm-like, 40.0-57.5 μm long and 3.8-6.25 μm wide (N = 30). Hyphae occasionally produced spherical chlamydospores with a diameter of around 7.5 μm (N = 30). Conidia germinated after 12 h in moist conditions, and germ tubes originated from multiple points on the conidia. Based on these morphological features, the isolated fungus was identified as Calonectria spp. (Lombard et al. 2010). Six loci, including ITS, act, cmdA, his3, tef1, and tub2, were amplified and sequenced for molecular identification of an isolate F099 using primers listed in Table S1. The obtained ITS (528 bp, GenBank accession no. OL635556), act (263 bp, OL694221), cmdA (470 bp, OL694222), his3 (432 bp, OL694223), tef1 (487 bp, OL694224), and tub2 (535 bp, OL694225) sequences showed 100% similarity to the ex-type strain of Calonectria canadiana, CMW 23673 (accession nos. MT359667, MT334976, MT335206, MT335446, MT412737, and MT412958, respectively; Figure S1D) (Kang et al. 2001, Lechat et al. 2010, Liu et al. 2020). The isolate F099 of C. canadiana was further subjected to pathogenicity tests. Koch's postulates were performed by placing three mycelial disks (ten-day old, 5 mm) with conidia on the sterile needle-acupunctured surface of healthy fruits of the peach cultivar "Yonglian Sweet" (N= 10). Mock inoculations with sterile PDA disks were served as a control. All the inoculated fruits were kept in a moist chamber (25℃, 16-h light and 8-h dark period). The inoculation assay was repeated twice. Rotting symptoms developed on all the inoculated fruits about 5 days post-inoculation (dpi) and grayish-white mycelia appeared around ten days post inoculation while mock inoculated fruits did not show any rotting. The pathogen of interest was re-isolated from the inoculated fruits and validated as C. canadiana by ITS and tef1 sequences. All above evidence collectively indicates that the fungal pathogen causing the peach fruit rot is C. canadiana. The new host plant and new geographic distribution reported here will inform future management of this fungal species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-12-21-2636-PDN | DOI Listing |
Plants (Basel)
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.
View Article and Find Full Text PDFPlant Dis
January 2025
University of Florida Tropical Research and Education Center, Plant Pathology, 1615 SE 23rd Way, Homestead, Florida, United States, 33031-3314;
The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain.
Endophytes can be a promising alternative for sustainable agronomic practices. In this study, we report for the first time a root-colonizing fungal strain (Sl27) of the genus Leptobacillium as a tomato (Solanum lycopersicum) endophyte, with no clear homology to any known species. Performed analyses and assays, including morphological and physiological characterization of the fungal isolate, provided insights into the ecological niche and potential agronomical and industrial applications of the fungal isolate.
View Article and Find Full Text PDFPlanta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!