A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable Hydrogel Containing Cowpea Mosaic Virus Nanoparticles Prevents Colon Cancer Growth. | LitMetric

Despite advances in laparoscopic surgery combined with neoadjuvant and adjuvant therapy, colon cancer management remains challenging in oncology. Recurrence of cancerous tissue locally or in distant organs (metastasis) is the major problem in colon cancer management. Vaccines and immunotherapies hold promise in preventing cancer recurrence through stimulation of the immune system. We and others have shown that nanoparticles from plant viruses, such as cowpea mosaic virus (CPMV) nanoparticles, are potent immune adjuvants for cancer vaccines and serve as immunostimulatory agents in the treatment or prevention of tumors. While being noninfectious toward mammals, CPMV activates the innate immune system through recognition by pattern recognition receptors (PRRs). While the particulate structure of CPMV is essential for prominent immune activation, the proteinaceous architecture makes CPMV subject to degradation ; thus, CPMV immunotherapy requires repeated injections for optimal outcome. Frequent intraperitoneal (IP) injections however are not optimal from a clinical point of view and can worsen the patient's quality of life due to the hospitalization required for IP administration. To overcome the need for repeated IP injections, we loaded CPMV nanoparticles in injectable chitosan/glycerophosphate (GP) hydrogel formulations, characterized their slow-release potential, and assessed the antitumor preventative efficacy of CPMV-in-hydrogel single dose soluble CPMV (single and prime-boost administration). Using fluorescently labeled CPMV-in-hydrogel formulations, release data indicated that single IP injection of the hydrogel formulation yielded a gel depot that supplied intact CPMV over the study period of 3 weeks, while soluble CPMV lasted only for one week. IP administration of the CPMV-in-hydrogel formulation boosted with soluble CPMV for combined immediate and sustained immune activation significantly inhibited colon cancer growth after CT26 IP challenge in BALB/c mice. The observed antitumor efficacy suggests that CPMV can be formulated in a chitosan/GP hydrogel to achieve prolonged immunostimulatory effects as single-dose immunotherapy against colon cancer recurrence. The present findings illustrate the potential of injectable hydrogel technology to accommodate plant virus nanoparticles to boost the translational development of effective antitumor immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840516PMC
http://dx.doi.org/10.1021/acsbiomaterials.2c00284DOI Listing

Publication Analysis

Top Keywords

colon cancer
20
soluble cpmv
12
cpmv
11
injectable hydrogel
8
cowpea mosaic
8
mosaic virus
8
virus nanoparticles
8
cancer growth
8
cancer management
8
cancer recurrence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!