Turbidite successions can behave either as aquitards or aquifers depending on their lithological and hydraulic features. In particular, post-depositional processes can increase rock permeability due to fracture development in the competent layers. Thus, at a local scale, turbidite systems warrant further detailed investigations, aimed at reconstructing reliable hydrogeological models. The objective of this work was to investigate from the hydrogeological perspective a turbiditic aquifer located in southern Italy, where several perennial and seasonal springs were detected. Considering the complex hydrodynamics of these systems at the catchment scale, to reach an optimal characterization, a multidisciplinary approach was adopted. The conceptual framework employed microbial communities as groundwater tracers, together with the physicochemical features and isotopic signature of springs and streams from water samples. Meanwhile, geophysical investigations coupled with the geological survey provided the contextualization of the hydrogeological data into the detailed geological reconstruction of the study area. This modus operandi allowed us to typify several differences among the samples, allowing identification of sources and paths of surface water and groundwater, along with diffuse groundwater outflow along streams. As a final result, a hydrogeological conceptual model was reconstructed, underlining how at a very local scale the lithologic, hydraulic, and geomorphological heterogeneity of the studied relief can lead to an improved hydrogeological conceptual model compared to that of other turbidite systems. These results open new questions about the hydrogeological behavior of turbiditic aquifers, which could be pivotal in future research. In fact, these systems could support relevant ecosystems and anthropic activities, especially where climate change will force the research of new (and probably less hydrogeologically efficient) water sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075667PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268252PLOS

Publication Analysis

Top Keywords

turbidite systems
12
open questions
8
southern italy
8
local scale
8
hydrogeological conceptual
8
conceptual model
8
hydrogeological
7
turbidite
4
systems behave
4
behave hydrogeological
4

Similar Publications

Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment.

Swiss J Geosci

December 2024

Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, Dübendorf, 8600 Switzerland.

Unlabelled: Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column.

View Article and Find Full Text PDF

Trace fossils from Ordovician deep-marine environments are typically produced by a shallow endobenthos adapted to live under conditions of food scarcity by means of specialized grazing, farming, and trapping strategies, preserved in low-energy intermediate to distal zones of turbidite systems. High-energy proximal zones have been considered essentially barren in the early Paleozoic. We report here the first trace and body fossils of lingulide brachiopods in deep-marine environments from an Upper Ordovician turbidite channel-overbank complex in Asturias, Spain.

View Article and Find Full Text PDF

Brine pools in deep-sea environments provide unique perspectives into planetary and geological processes, extremophile microbial communities, and sedimentary records. The NEOM Brine Pool Complex was the first deep-sea brine pool system found in the Gulf of Aqaba, representing a significant extension of the geographical range and depositional setting of Red Sea brine pools. Here, we use a combination of brine pool samples collected via cast using a conductivity, temperature, depth instrument (CTD), as well as interstitial porewaters extracted from a sediment core collected in the NEOM Brine Pool to characterize the chemical composition and subsurface evolution of the brine.

View Article and Find Full Text PDF

Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386.

View Article and Find Full Text PDF

Acoustic and optical sensing modalities represent two of the primary sensing methods within underwater environments, and both have been researched extensively in previous works. Acoustic sensing is the premier method due to its high transmissivity in water and its relative immunity to environmental factors such as water clarity. Optical sensing is, however, valuable for many operational and inspection tasks and is readily understood by human operators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!