A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective Connectivity in Cortical Networks During Deception: A Lie Detection Study Based on EEG. | LitMetric

Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge test protocol was employed, and 64 electrodes' electroencephalogram (EEG) signals were recorded from 30 subjects (15 guilty and 15 innocent). Cortical current density waveforms were then estimated on the 24 regions of interest (ROIs). Next, partial directed coherence (PDC), an effective connectivity (EC) analysis was applied in the cortical waveforms to obtain the brain EC networks for four bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Furthermore, using the graph theoretical analysis, the network parameters with significant differences in the EC network were extracted as features to identify the two groups. The high classification accuracy of the four bands demonstrated that the proposed method was suitable for lie detection. In addition, based on the optimal features in the classification mode, the brain "hub" regions were identified, and the MIIFs were significantly different between the guilty and innocent groups. Moreover, the fronto-parietal network was found to be most prominent among all MIIFs at the four bands. Furthermore, combining the neurophysiology significance of the four frequency bands, the roles of all MIIFs were analyzed, which could help us to uncover the underlying cognitive processes and mechanisms of deception.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3172994DOI Listing

Publication Analysis

Top Keywords

effective connectivity
8
lie detection
8
guilty innocent
8
connectivity cortical
4
cortical networks
4
deception
4
networks deception
4
deception lie
4
detection study
4
study based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!