Gradient Field Detection Using Interference of Stimulated Microwave Optical Sidebands.

Phys Rev Lett

QuSpin Inc, 331S 104th St. Unit 130, Louisville, Colorado 80027, USA.

Published: April 2022

We demonstrate that stimulated microwave optical sideband generation using parametric frequency conversion can be utilized as a powerful technique for coherent state detection in atomic physics experiments. The technique has advantages over traditional absorption or polarization rotation-based measurements and enables the isolation of signal photons from probe photons. We outline a theoretical framework that accurately models sideband generation using a density matrix formalism. Using this technique, we demonstrate a novel intrinsic magnetic gradiometer that detects magnetic gradient fields between two spatially separated vapor cells by measuring the frequency of the beat note between sidebands generated within each cell. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with ^{87}Rb atoms in a coherent superposition of magnetically sensitive hyperfine ground states. Interference between the sidebands generates a low-frequency beat note whose frequency is determined by the magnetic field gradient between the two vapor cells. In contrast to traditional gradiometers the intermediate step of measuring the magnetic field experienced by the two vapor cells is unnecessary. We show that this technique can be readily implemented in a practical device by demonstrating a compact magnetic gradiometer sensor head with a sensitivity of 25  fT/cm/sqrt[Hz] with a 4.4 cm baseline, while operating in a noisy laboratory environment unshielded from Earth's field.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.163602DOI Listing

Publication Analysis

Top Keywords

vapor cells
12
stimulated microwave
8
microwave optical
8
sideband generation
8
parametric frequency
8
frequency conversion
8
magnetic gradiometer
8
beat note
8
magnetic field
8
magnetic
5

Similar Publications

Objective: Evaluate the influence of photobiomodulation in a model of oral carcinogenesis induced by 4-nitroquinoline-n-oxide (4-NQO).

Subjective: Ninety-six Swiss mice received topical application of 1% 4-NQO on tongue dorsum, for 20 weeks. The tongue was subjected to photobiomodulation with red (71.

View Article and Find Full Text PDF

Multi-pathway oxidative stress amplification via controllably targeted nanomaterials for photoimmunotherapy of tumors.

J Nanobiotechnology

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.

Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.

View Article and Find Full Text PDF

Anti-proliferative and photodynamic activities of Senna didymobotrya (Fresen.) leaf alkaloid-rich extracts against breast cancer cells.

BMC Complement Med Ther

January 2025

Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, 2028, South Africa.

Background: Amongst all neoplastic diseases, breast cancer represents a major cause of death among the female population in developed and developing countries. Since alkaloid drugs are commonly used in chemotherapy to manage this disease, this study investigated the anti-proliferative effectiveness of alkaloid-rich fractions of Senna didymobotrya leaves only and with laser irradiation against MCF-7 breast cancer cells.

Method And Materials: A powdered sample of the plant leaves was extracted with 50% ethanol, filtered and their pH was adjusted with acid and base solution followed by partitioning with chloroform and ethyl acetate solvents.

View Article and Find Full Text PDF

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), a local cancer treatment using photosensitizers, has been reported to enhance antitumor immune responses by inducing immunogenic cell death. Although several studies have demonstrated the synergistic antitumor effects of PDT and immune checkpoint blockage (ICB), the detailed underlying mechanisms remain poorly understood. In this study, we investigated the immunological effects of PDT with talaporfin (Tal-PDT), a clinically approved photosensitizer, using bilateral tumor-bearing mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!