We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a ^{9}Be^{+} qubit ion is mapped to a ^{25}Mg^{+} readout ion using laser-driven Raman transitions. By partitioning the ^{9}Be^{+} ground-state hyperfine manifold into two subspaces representing the two qubit states and choosing appropriate laser parameters, the protocol can be made robust to spontaneous photon scattering errors on the Raman transitions, enabling repetition for increased readout fidelity. We demonstrate combined readout and back-action errors for the two subspaces of 1.2_{-0.6}^{+1.1}×10^{-4} and 0_{-0}^{+1.9}×10^{-5} with 68% confidence while avoiding decoherence of spectator qubits due to stray resonant light that is inherent to direct fluorescence detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.160503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!