The purpose of this study is to investigate the effects of automatic segmentation algorithms on the performance of ultrasound (US) radiomics models in predicting the status of lymph node metastasis (LNM) for patients with early stage cervical cancer preoperatively. US images of 148 cervical cancer patients were collected and manually contoured by two senior radiologists. The four deep learning-based automatic segmentation models, namely U-net, context encoder network (CE-net), Resnet, and attention U-net were constructed to segment the tumor volumes automatically. Radiomics features were extracted and selected from manual and automatically segmented regions of interest (ROIs) to predict the LNM of these cervical cancer patients preoperatively. The reliability and reproducibility of radiomics features and the performances of prediction models were evaluated. A total of 449 radiomics features were extracted from manual and automatic segmented ROIs with Pyradiomics. Features with an intraclass coefficient (ICC) > 0.9 were all 257 (57.2%) from manual and automatic segmented contours. The area under the curve (AUCs) of validation models with radiomics features extracted from manual, attention U-net, CE-net, Resnet, and U-net were 0.692, 0.755, 0.696, 0.689, and 0.710, respectively. Attention U-net showed best performance in the LNM prediction model with a lowest discrepancy between training and validation. The AUCs of models with automatic segmentation features from attention U-net, CE-net, Resnet, and U-net were 9.11%, 0.58%, -0.44%, and 2.61% higher than AUC of model with manual contoured features, respectively. The reliability and reproducibility of radiomics features, as well as the performance of radiomics models, were affected by manual segmentation and automatic segmentations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082739PMC
http://dx.doi.org/10.1177/15330338221099396DOI Listing

Publication Analysis

Top Keywords

radiomics features
20
cervical cancer
16
attention u-net
16
automatic segmentation
12
ce-net resnet
12
features extracted
12
effects automatic
8
automatic segmentations
8
lymph node
8
prediction models
8

Similar Publications

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.

View Article and Find Full Text PDF

Development and Validation of an AI-Based Multimodal Model for Pathological Staging of Gastric Cancer Using CT and Endoscopic Images.

Acad Radiol

January 2025

Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:

Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.

Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.

View Article and Find Full Text PDF

Radiomics and Deep Learning Model for Benign and Malignant Soft Tissue Tumors Differentiation of Extremities and Trunk.

Acad Radiol

January 2025

Department of Radiology, Southeast University Zhongda Hospital, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China (M.Y., J.J.). Electronic address:

Rationale And Objectives: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.

Materials And Methods: Data of 115 patients with STTs of extremities and trunk were collected from our hospital as the training set, and data of other 70 patients were collected from another center as the external validation set. Outlined Regions of interest included the intratumor and the peritumor region extending outward by 5 mm, then the corresponding radiomics features were extracted respectively.

View Article and Find Full Text PDF

An Automatic Deep-Radiomics Framework for Prostate Cancer Diagnosis and Stratification in Patients with Serum Prostate-Specific Antigen of 4.0-10.0 ng/mL: A Multicenter Retrospective Study.

Acad Radiol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (B.Z., F.M., X.S., S.L., Q.W.); Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China (Q.W.). Electronic address:

Rationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.

Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.

View Article and Find Full Text PDF

Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study.

Transl Oncol

January 2025

Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:

Background And Objective: Though several clinicopathological features are identified as prognostic indicators, potentially prognostic radiomic models are expected to preoperatively and noninvasively predict survival for HCC. Traditional radiomic models are lacking in a consideration for intratumoral regional heterogeneity. The study aimed to establish and validate the predictive power of multiple habitat radiomic models in predicting prognosis of hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!