GWAS detected ninety-eight significant SNPs associated with Sclerotinia sclerotiorum resistance. Six statistical models resulted in medium to high predictive ability, depending on trait, indicating potential of genomic prediction for disease resistance breeding. The lack of complete host resistance and a complex resistance inheritance nature between rapeseed/canola and Sclerotinia sclerotiorum often limits the development of functional molecular markers that enable breeding for sclerotinia stem rot (SSR) resistance. However, genomics-assisted selection has the potential to accelerate the breeding for SSR resistance. Therefore, genome-wide association (GWA) mapping and genomic prediction (GP) were performed using a diverse panel of 337 rapeseed/canola genotypes. Three-week-old seedlings were screened using the petiole inoculation technique (PIT). Days to wilt (DW) up to 2 weeks and lesion phenotypes (LP) at 3, 4, and 7 days post-inoculation (dpi) were recorded. A strong correlation (r = - 0.90) between DW and LP_4dpi implied that a single time point scoring at four days could be used as a proxy trait. GWA analyses using single-locus (SL) and multi-locus (ML) models identified a total of 41, and 208 significantly associated SNPs, respectively. Out of these, ninety-eight SNPs were identified by a combination of the SL model and any of the ML models, at least two ML models, or two traits. These SNPs explained 1.25-12.22% of the phenotypic variance and considered as significant, could be associated with SSR resistance. Eighty-three candidate genes with a function in disease resistance were associated with the significant SNPs. Six GP models resulted in moderate to high (0.42-0.67) predictive ability depending on SSR resistance traits. The resistant genotypes and significant SNPs will serve as valuable resources for future SSR resistance breeding. Our results also highlight the potential of genomic selection to improve rapeseed/canola breeding for SSR resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-022-04104-0 | DOI Listing |
Nat Commun
January 2025
Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA.
Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability.
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, India.
Plant Dis
January 2025
State Fruit Experiment Station, Missouri State University, Mountain Grove, Missouri, United States;
Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.
View Article and Find Full Text PDFVirchows Arch
January 2025
Belgian Society of Pathology, Brussels, Belgium.
The adoption of Standardized Structured Reporting (SSR) in pathology offers significant potential to improve data consistency, completeness, and interoperability. This study combines quantitative data from an online survey of Belgian pathologists with qualitative insights from focus group interviews to identify key factors influencing SSR implementation. Survey results demonstrate strong support for SSR, particularly in enhancing report uniformity, completeness, and efficiency, especially in multidisciplinary teams and for secondary data use.
View Article and Find Full Text PDFDrought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!