Introduction: The causative agent of African swine fever (Asfarviridae: Asfivirus: African swine fever virus) (ASF) is a double-stranded DNA virus of 175-215 nm. To date, 24 of its genotypes are known. Clustering of ASF genotype II isolates is carried out by examining a limited number of selected genome markers. Despite the relatively high rate of mutations in the genome of this infectious agent compared to other DNA viruses, the number of known genome molecular markers for genotype II isolates is still insufficient for detailed subclustering. The aims of this work were the comparative analysis of ASFV/Zabaykali/WB-5314/2020 virus isolate and determination of additional molecular markers which can be used for clustering of viral genotype II sequences.
Material And Methods: ASF virus isolate ASFV/Zabaykali/WB-5314/2020 was used to extract genomic DNA (gDNA). Sequencing libraries were constructed using the Nextera XT DNA library prepare kit (Illumina, USA) using the methodology of the next generation sequencing (NGS).
Results: The genome length was 189,380 bp, and the number of open reading frames (ORFs) was 189. In comparison with the genome of reference isolate Georgia 2007/1, 33 single nucleotide polymorphisms (SNPs) were identified, of which 13 were localized in the intergenic region, 10 resulted to the changes in the amino acid sequences of the encoded proteins, and 10 affected the ORF of ASF virus genes.
Discussion: When analyzing intergenic regions, the ASFV/Zabaykali/WB-5314/2020 isolate is grouped separately from a number of isolates from Poland and three isolates from People's Republic of China (PRC), since it does not harbor additional tandem repeat sequence (TRS). At the same time, the construction of a phylogenetic tree based on DP60R gene sequencing relates ASFV/Zabaykali/WB-5314/2020 to isolates from PRC and Poland. Moreover, phylogenetic analysis of full-genome sequences confirmed previous studies on the grouping of viruses of genotype II, and as for the studied isolate, it was grouped with the variants from China.
Conclusion: A new variable region was identified, the DP60R gene, clustering for which gave a result similar to the analysis of full-length genomes. Probably, further study of the distribution of ASF virus isolates by groups based on the analysis of this gene sequences will reveal its significance for studying the evolution of the virus and its spread.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.36233/0507-4088-104 | DOI Listing |
Sci Rep
January 2025
Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
African swine fever (ASF) is a viral, hemorrhagic disease of swine that is reportable to the World Organisation for Animal Health. Since 2007, ASF has been expanding globally and causing severe disruption to the global swine industry. In 2021, ASF was detected in the Dominican Republic, prompting an emergency response from local and international officials.
View Article and Find Full Text PDFInt J Pharm
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.. Electronic address:
Background: African swine fever (ASF) is a highly contagious disease, and the core-shell protein p34 is an important antigen that can induce immune responses. The use of ferritin nanoparticles for the orderly and repetitive display of antigens on the particle surface can improve the immunogenicity of subunit vaccines. Here, we used the SpyCatcher/Spytag system to conjugate ferritin nanoparticles with the p34 protein (F-p34).
View Article and Find Full Text PDFVet Res Commun
January 2025
Veterinary Research Institute (VRI), 59 Jalan Sultan Azlan Shah, 31400, Ipoh, Perak, Malaysia.
African swine fever (ASF), a severe and highly contagious haemorrhagic viral disease of pigs, is becoming a major threat not only in Malaysia but around the world. The first confirmed case of ASF in Malaysia was reported in February 2021. Despite the emergence of ASF in Malaysia, genetic information on this causative pathogen for the local livestock is still limited.
View Article and Find Full Text PDFVet Res Forum
November 2024
Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India.
African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.
View Article and Find Full Text PDFVet Med Int
January 2025
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Bicutan, Taguig 1634, Philippines.
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!