Osteosarcoma (OSA) is the most common malignant bone cancer in dogs. Canine and human OSA share several features, including tumour environments, response to traditional treatment, and several molecular pathways. Hedgehog (Hh) signalling is known to contribute to tumorigenesis and progression of various cancers, including human OSA. This study aimed to identify the role of the Hh signalling pathway in canine OSA cell lines, including Abrams, D17, and Moresco, focusing on the signal transducer Smoothened (SMO). mRNA and protein levels of Hh pathway components, including SHH, IHH, SMO, and PTCH1, were aberrant in all examined OSA cell lines compared with canine osteoblast cells. The SMO inhibitor cyclopamine significantly decreased cell viability and colony-forming ability in the canine OSA cell lines in a dose-dependent manner. Moresco cells, which expressed the highest level of SMO protein, were the most sensitive to the anticancer effect of cyclopamine among the three canine OSA cell lines tested. Hh downstream target gene and protein expression in canine OSA cell lines were downregulated after cyclopamine treatment. In addition, cyclopamine significantly increased apoptotic cell death in Abrams and Moresco cells. The findings that Hh/SMO is activated in canine OSA cell lines and cyclopamine suppresses OSA cell survival via inhibition of SMO suggest that the Hh/SMO signalling pathway might be a novel therapeutic target for canine OSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/vco.12828 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!