A facile, reliable, fast-response poly(3-hexylthiophene-2,5-diyl) (P3HT)-based humidity sensor was developed by introducing metal-organic frameworks (MOFs), HKUST-1, into the semiconducting layer. HKUST-1 displayed an excellent ability to capture water molecules, thereby generating and attracting charge carriers derived from the water molecules present in the active layer. The HKUST-1/P3HT hybrid film showed excellent device sensitivity with an enhanced electrical current and a threshold voltage shift as a function of the relative humidity due to the superior gas capture properties and the porosity of HKUST-1. The surface energy of the substrate altered the distribution and location of HKUST-1 in the active layer, which improved the sensitivity of the hydrophilic surface. A dynamic gas sensing test revealed that the hybrid film displayed a reliable and stable performance with fast response and recovery times. The introduction of MOFs into a conjugated polymer stabilized and sensitized the devices, providing a facile method of improving gas sensor technologies based on organic semiconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059327 | PMC |
http://dx.doi.org/10.1039/c8ra09201j | DOI Listing |
The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.
View Article and Find Full Text PDFOpt Express
December 2024
In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physics Science and Engineering, Tongji University, siping road, Shanghai, 200092, CHINA.
Hybrid magnonics has attracted extensive attention for its potential applications in quantum information processing, especially following the discovery of strong coupling in magnon-magnon hybrid systems. In this paper, we studied the coupling phenomena between the left-handed (LH) and right-handed (RH) magnon modes in synthetic antiferromagnets (SAFs) with a tilted perpendicular magnetic anisotropy (PMA). By tilting the PMA at a certain angle from the film normal, we achieved strong magnon-magnon coupling without the need for an external magnetic field.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.
View Article and Find Full Text PDFSmall
January 2025
Department of Radiation Science and Technology, Delft University of Technology, Delft, 2629 JB, The Netherlands.
Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. TiCT MXene provides several advantages over traditional metallic current collectors like Cu and Ti, including better Zn plating affinity, lightweight, and flexibility. However, self-freestanding MXene current collectors in AZMBs remain underexplored, likely due to challenges with Zn deposition reversibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!