The ADP/ATP carrier (AAC) is crucial for mitochondrial functions by importing ADP and exporting ATP across the inner mitochondrial membrane. However, the mechanism of highly specific ADP recognition and transport by AAC remains largely elusive. In this work, spontaneous ADP binding process to the ground c-state AAC was investigated through rigorous molecular dynamics simulations of over 31 microseconds in total. With improved simulation strategy, we have successfully identified a highly specific ADP binding site in the upper region of the cavity, and this site exhibits selectivity for ADP over ATP based on free-energy calculations. Sequence analyses on adenine nucleotide transporters also suggest that this subgroup uses the upper region of the cavity, rather than the previously proposed central binding site located at the bottom of the cavity to discriminate their substrates. Identification of the new site unveils the unusually high substrate specificity of AAC and explains the dependence of transport on the flexibility between and glycosidic conformers of ADP. Moreover, this new site together with the central site supports early biochemical findings. In light of these early findings, our simulations described a multi-step model in which the carrier uses different sites for substrate attraction, recognition and conformational transition. These results provide new insights into the transport mechanism of AAC and other adenine nucleotide transporters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046947 | PMC |
http://dx.doi.org/10.1016/j.csbj.2022.03.032 | DOI Listing |
Rev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
ATP synthase is a rotary motor enzyme that drives the formation of ATP from ADP and P and uses multiple electrical forces to do this. This chapter outlines the exquisite use of these electrical forces to generate the high energy phosphates on which all our lives depend. Vacuolar ATPases and the ADP/ATP carrier also are explored.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US.
Cyanobacterial photosynthesis (to produce ATP and NADPH) might have played a pivotal role in the endosymbiotic evolution to chloroplast. However, rather than meeting the ATP requirements of the host cell, the modern-day land plant chloroplasts are suggested to utilize photosynthesized ATP predominantly for carbon assimilation. This is further highlighted by the fact that the plastidic ADP/ATP carrier translocases from land plants preferentially import ATP.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
Citrin belongs to the SLC25 transport protein family found mostly in inner mitochondrial membranes. The family prototype, the ADP-ATP carrier, delivers ATP made inside mitochondria to the cellular cytoplasm and returns ADP to the mitochondrion for resynthesis of ATP. In pre-genomic 1981, I noticed that the protein sequence of the bovine ADP-ATP carrier consists of three related sequences, each containing two transmembrane α-helices traveling in opposite senses.
View Article and Find Full Text PDFAvian Pathol
December 2024
Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, People's Republic of China.
The haemolysin co-regulatory protein (Hcp) plays a significant role in the pathogenicity of avian pathogenic (APEC) as an effector protein of the type VI secretion system (T6SS) to the host. Meanwhile, mitochondria in the host are the target of effector proteins of various secretion systems. Here, we explored the effects of APEC effector Hcp2b on the mitochondria of DF-1 cells and found that Hcp2b results in damage in mitochondria.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India.
Clobazam (CLB) and Vigabatrin (VGB) are commonly used antiepileptic drugs (AEDs) in the treatment of epilepsy. Here, we have examined the genotoxic effect of these AEDs in . The Drosophila larvae were exposed to different concentrations of CLB and VGB containing food media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!