Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomimetic polymeric materials, adopting the basic molecular design principles of biological materials, have been extensively studied in recent years but it is still challenging to combine assorted mechanical characteristics in a single material. Here, we present a simple and effective strategy to prepare mechanically robust yet resilient biomimetic polymer networks by utilizing dual noncovalent and covalent cross-linkings. Tailoring the dual cross-links consisting of thiourea noncovalent interactions and epoxy-amine covalent linkages in the biomimetic polymer networks enables a rare combination of excellent elastic modulus (1.1 GPa), yield stress (39 MPa), extensibility (320%), as well as complete strain and performance recovery after deformation at room temperature. The biomimetic polymer networks also exhibit highly adaptive mechanical properties in response to multiple-stimuli including strain rate, temperature, light, and solvent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064385 | PMC |
http://dx.doi.org/10.1039/c9ra02760b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!