Amphiphilic branched silica derivatives associated with oligomeric medium (ASiP) were obtained using tetraethoxysilane, polyoxyethylene glycol and low molecular weight polydimethylsiloxane. The creation of a silica core was based on tetraethoxysilane hydrolysis and condensation reactions by using water and a potassium diethylene glycolate as the catalyst. These reactions proceeded with the sequential participation of polyoxyethylene glycol and polydimethylsiloxane in parallel transetherification reactions. Microporous polymer film based on 2,4-toluene diisocyanate and block copolymers of propylene and ethylene oxides with terminal potassium-alcoholate groups were modified by ASiP. It has been shown that ASiP at the phase interface between thermodynamically incompatible macrochains performs the function of a link. It leads to a significant increase of intermolecular interactions and the supramolecular organization of the modified microporous polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066018PMC
http://dx.doi.org/10.1039/c9ra03683kDOI Listing

Publication Analysis

Top Keywords

amphiphilic branched
8
branched silica
8
silica derivatives
8
derivatives associated
8
associated oligomeric
8
oligomeric medium
8
polyoxyethylene glycol
8
synthesis characterization
4
characterization amphiphilic
4
medium amphiphilic
4

Similar Publications

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

Collaborative stabilizing effect of trehalose and myofibrillar protein on high internal phase emulsions: Improved freeze-thaw stability and 3D printability.

Food Chem

December 2024

College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China. Electronic address:

This study investigated the improvement of adding trehalose (Tre) on freeze-thaw (F-T) stability and 3D printability of myofibrillar protein (MP)-based high internal phase emulsions (HIPEs), also the underlying mechanism. Appropriate Tre addition formed thicker shell-like structure around MP by hydrogen bonds, and induced protein unfolding to ameliorate amphiphilicity. Additionally, Tre promoted the MP diffusion to interface to reduce interfacial tension.

View Article and Find Full Text PDF

Oxidative stress and inflammation are key pathological features of atherosclerotic plaques. Numerous nanomedicines have been developed to alleviate oxidative stress and reduce inflammation within plaques. However, nonbioactive carrier materials reduce the bioavailability of nanomedicines and may pose potential biological toxicity.

View Article and Find Full Text PDF

Self-Assembly and Biological Properties of Highly Fluorinated Oligonucleotide Amphiphiles.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, McGill University, 801 Sherbrooke St. W, QC-H3A 0B8, Montreal, Canada.

Article Synopsis
  • Nucleic acids can effectively silence disease-related genes and have advantages over small molecule drugs, such as high specificity and the ability to target hard-to-reach molecules.
  • However, their instability in biological settings and quick clearance from the body pose challenges, leading to the need for nanocarriers.
  • Spherical nucleic acids (SNA) made from highly fluorinated DNA amphiphiles offer improved stability in biological media and promise better delivery of nucleic acid therapies for gene silencing.
View Article and Find Full Text PDF

The self-assembly process is governed by the individual constituents of molecules through precise non-covalent interactions. Amphiphilic cyanines are intriguing in supramolecular chemistry due to the large polarizability of their delocalized π-electron systems, their tuneable optical properties and their ability to form well-defined self-assembled structures in different media. Here we present the synthesis of a novel tetrahydroxy amphiphilic carbocyanine dye with perfluoro alkylated chains -(CH)-(CF)-CF as hydrophobic segments and aminoproanediol as hydrophilic segment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!