We hereby report the synthesis, characterization and catalytic applications in the epoxidation of alkenes by a vanadyl porphyrin having bulky bromo substituents at the β-positions vanandyltetrabromotetraphenylporphyrin (1). The synthesized porphyrin was characterized by various spectroscopic techniques like UV-visible, FT-IR, EPR, MALDI-TOF mass spectrometry and single crystal X-ray analysis. Porphyrin 1 has a nonplanar structure as indicated by its X-ray structure, DFT and electrochemical studies. 1 was analyzed for its catalytic application in the epoxidation of various alkenes. The catalytic reactions were carried out in CHCN/HO mixture in 3 : 1 (v/v) ratio. 1 displayed good efficiency in terms of mild reaction conditions, lower reaction temperature and minimal catalyst amount consumption. 1 exhibited excellent selectivity, high conversion efficiency and huge TOF (7600-9800 h) in a significantly low reaction time of 0.5 h. Catalyst 1 was regenerated at the end of various catalytic cycles making it reusable and industrially important.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062382PMC
http://dx.doi.org/10.1039/c8ra09825eDOI Listing

Publication Analysis

Top Keywords

epoxidation alkenes
8
vanadyl β-tetrabromoporphyrin
4
β-tetrabromoporphyrin synthesis
4
synthesis crystal
4
crystal structure
4
structure efficient
4
efficient selective
4
selective catalyst
4
catalyst olefin
4
olefin epoxidation
4

Similar Publications

Green Synthesis, Formulation and Test Field of L. (Lepidoptera: Lymantriidae) Sex Pheromone in East European Region.

Int J Mol Sci

January 2025

Pheromone Production Center, "Raluca Ripan" Institute for Research in Chemistry, "Babes-Bolyai" University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania.

The nun moth, L. (Linnaeus, 1758), is one of the most important defoliators of coniferous forests in Europe and Asia. In sexual communication, females produce three epoxides and an alkene: (-)-disparlure [(7,8)--7,8-epoxy-2-methyloctadecane], (+)-monachalure [(7,8)--7,8-epoxyoctadecane], (-)-monachalure [(7,8)--7,8-epoxyoctadecane], and their corresponding olefins.

View Article and Find Full Text PDF

A novel class of bis-8-aryl-isoquinoline () bis-alkylamine iron complexes, Fe()(OTf) and Fe()(OTf) ( = dipyrrolidinyl or = ,'-dimethylcyclohexyl-diamine), for asymmetric oxidation reactions is reported. The scalable divergent synthesis of 8-aryl-3-formylisoquinolines (), the key intermediates in preparing these ligands, enables precise structural and electronic tuning around the metal center. The enantioselective epoxidation and hydroxy carbonylation of conjugated alkenes, mediated by the Fe() catalyst with HO as the oxidant, demonstrates the potential of these redox Fe[N] catalysts in inducing face selection in oxygen transfer transformations.

View Article and Find Full Text PDF

Life cycle assessment (LCA) was used, next to green chemistry concepts, to compare the full environmental impacts of the epoxidation of a bio-based monomer, which can be used for the synthesis of vitrimers. On a laboratory scale, the synthesis of the monomer can either be done via a petrochemical route or via an enzymatic reaction pathway. Both reaction pathways were initially optimized to minimize the impact of suboptimal routes on the sustainability evaluation.

View Article and Find Full Text PDF

Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.

View Article and Find Full Text PDF

Preparation of novel chiral stationary phases based on chiral metal-organic cages enable extensive HPLC enantioseparation.

Anal Chim Acta

February 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China. Electronic address:

Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!