In order to satisfy the energy demands of the electromobility market, further improvements in cathode materials are receiving much attention, especially high energy density cathode materials for Li-ion batteries (LIBs). In this work, the self-propagating combustion (SPC) method is use to synthesise undoped LiNiCoTiO (LNCT), novel nano-sized Al-doped LiNiCo Al TiO (LCA) and LiNi CoAl TiO (LNA) ( = 0.01) cathode materials. LNCT, LCA and LNA were annealed at 700 °C for 24 h. Following the synthesis, the phase, chemical structure and purity of the materials were analysed using X-ray diffraction (XRD). Based on the XRD results, all materials exhibit a single-phase structure with rhombohedral layered structure. Based on the HRTEM and EDX results, all samples exhibit polyhedral-like shapes, while the Al-doped samples display smaller crystallite sizes compared to the undoped sample. As for the electrochemical performances, the initially discharged capacity of LCA (238.6 mA h g) is higher than that of LNA (214.7 mA h g) and LNCT (150.5 mA h g). However, LNA has a lower loss of capacity after the 50 cycle compared to the LCA sample, which makes it a more excellent candidate for electrochemical applications. The main reason for the excellent electrochemical behaviour of LNA is due to lower cation mixing. Furthermore, Rietveld refinements reveal that the LNA sample has a longer atomic distance of Li-O and shorter TM-O in the cathode structure, which makes Li ion diffusion more efficient, leading to excellent electrochemical performance. These findings further proved the potential of the novel nano cathode material of LiNi CoAl TiO (LNA) to replace the existing commercialized cathode materials for rechargeable Li-ion batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057482 | PMC |
http://dx.doi.org/10.1039/d0ra07434a | DOI Listing |
Nanomicro Lett
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.
View Article and Find Full Text PDFNano Lett
January 2025
College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, P. R. China.
Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410072, China.
High power pulse generators are moving in the direction of compact, solid-state, and stable working in a relatively long time. In this paper, a compact pulse forming line-Marx type high power pulse generator, based on a ceramic pulse forming line and a spark gap switch with carbide modified graphite electrodes, is studied numerically and experimentally. Specifically, a ceramic based pulse forming line with high relative permittivity was used to achieve long pulse duration in a limited dimension.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
We describe a simple gas expansion ion source based on static discharge voltages and a commercially available pulsed valve. The discharge is initiated by the gas pulse itself between two high voltage electrodes, without the need for fast voltage switches or complex timing schemes. The ion source very reliably produces intense bursts of molecular ions (with currents exceeding 100 μA during the pulse-on phase) with only minor pulse-to-pulse variations in intensity and pulse shape.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
The aqueous zinc metal battery holds great potential for large-scale energy storage due to its safety, low cost, and high theoretical capacity. However, challenges such as corrosion and dendritic growth necessitate controlled zinc deposition. This study employs epitaxy to achieve large-area, dense, and ultraflat zinc plating on textured copper foil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!