Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Terahertz (THz = 10 Hz) spectroscopy has shown great potential in biomedical research due to its unique features, such as the non-invasive and label-free identification of living cells and medical imaging. In this review, we summarized the advantages and progresses achieved in THz spectroscopy technology for blood cell detection, cancer cell characterization, bacterial identification and biological tissue discrimination, further introducing THz imaging systems and its progress in tissue imaging. We also highlighted the biological effects of THz radiation during its biological applications and the existing challenges and strategies to accelerate future clinical applications. The future prospects for THz spectroscopy will focus on developing rapid, label-free, and convenient biosensors for point-of-care tests and THz imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9062338 | PMC |
http://dx.doi.org/10.1039/c8ra10605c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!