Silicon doping is an effective way to modulate the bandgap of graphene that might open the door for graphene to the semiconductor industries. However, the mechanical properties of silicon doped graphene (SiG) also plays an important role to realize its full potential application in the electronics industry. Electronic and optical properties of silicon doped graphene are well studied, but, our understanding of mechanical and fracture properties of the doped structure is still in its infancy. In this study, molecular dynamics (MD) simulations are conducted to investigate the tensile properties of SiG by varying the concentration of silicon. It is found that as the concentration of silicon increases, both fracture stress and strain of graphene reduces substantially. Our MD results also suggest that only 5% of silicon doping can reduce the Young's modulus of graphene by ∼15.5% along the armchair direction and ∼13.5% along the zigzag direction. Tensile properties of silicon doped graphene have been compared with boron and nitrogen doped graphene. The effect of temperature, defects and crack length on the stress-strain behavior of SiG has also been investigated. Temperature studies reveal that SiG is less sensitive to temperature compared to free stranding graphene, additionally, increasing temperature causes deterioration of both fracture stress and strain of SiG. Both defects and cracks reduce the fracture stress and fracture strain of SiG remarkably, but the sensitivity to defects and cracks for SiG is larger compared to graphene. Fracture toughness of pre-cracked SiG has been investigated and results from MD simulations are compared with Griffith's theory. It has been found that for nano-cracks, SiG with larger crack length deviates more from Griffith's criterion and the degree of deviation is larger compared to graphene. Fracture phenomenon of pre-cracked SiG and the effect of strain rate on the tensile properties of SiG have been reported as well. These results will aid the design of SiG based semiconducting nanodevices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056426 | PMC |
http://dx.doi.org/10.1039/d0ra06085b | DOI Listing |
Chem Sci
January 2025
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China
The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China. Electronic address:
High-performance green functional materials have garnered significant interest for electromagnetic interference (EMI) shielding applications, but creating customized, low-density, high-strength and high-efficiency biomass-based shielding materials remains challenging. In this study, lightweight Ca doped sodium alginate (SA) porous scaffolds with a carbon nanotube (CNT)/graphene (Gr) hybrid conductive network were fabricated via direct ink writing (DIW) 3D printing. The SA/CNT/Gr inks with unique rheological properties were formulated and architectures with arbitrarily customized structures could be freely constructed based on the printable inks.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023 China. Electronic address:
Electrochemical glycerol oxidation reaction (GOR) presents a promising approach for converting excess glycerol (GLY) into high-value-added products. However, the complex mechanism and the challenge of achieving selectivity for diverse products make GOR difficult to address in both experimental and theoretical studies. In this work, three nitrogen-doped graphene-supported copper single-atom catalysts (CuN@Gra SACs, x = 2-4) were selected as the model system due to their simple structure, excellent conductivity and high structural stability.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!