In this paper, poly(styrene-divinylbenzene) foams were synthesized using a high internal phase emulsion (HIPE) technique with Span 80 and with 900 °C calcined oyster shell powder as a co-emulsifier, 2,2'-azobisisobutyronitrile (AIBN) as an initiator and deionized water as the dispersing phase. SEM images revealed that the materials possess a hierarchical porous structure of nano/micro size, which resulted in saturated oil adsorption in only half a minute. The dispersing phase amount was investigated for its effect on adsorption. The optimized foams have 24.8-58.3 g g adsorbencies for several organic solvents, and they demonstrated superhydrophobicity and excellent oleophilicity with the water contact angle (WCA) even close to 149° and oil contact angle approaching 0°. Moreover, the foams displayed high oil retention under pressure. The adsorption-centrifugation cycling results indicated high repeatability of the recovered foams. All of these features predicted the potential applications of superhydrophobic foams in oil-water separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064548 | PMC |
http://dx.doi.org/10.1039/c9ra01258c | DOI Listing |
Rapid Commun Mass Spectrom
March 2025
Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina, USA.
Rationale: Wildlife scientists are quantifying steroid hormones in a growing number of tissues and employing novel methods that must undergo validation before application. This study tested the accuracy and precision of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for use on blubber samples from short-finned pilot whales (Globicephala macrorhynchus). We expanded upon a method for corticosteroid quantification by adding analytes and optimizing internal standard (IS) application.
View Article and Find Full Text PDFMol Ther
January 2025
Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School; 30625 Hannover, NI, Germany. Electronic address:
Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B-cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.
View Article and Find Full Text PDFPilot Feasibility Stud
January 2025
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
BMC Pediatr
January 2025
Department of Orthopedics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56, Nanlishi Road, Beijing, 100045, China.
Background: Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder affecting multiple systems. However, arterial stenosis is a rare manifestation in patients with NF1. Since the symptoms of arterial stenosis caused by NF1 are often atypical and have a high under-diagnosis rate, this can lead to serious complications such as hypertension, ischemic stroke, or even death.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Chang'an University, Xi'an, 710061, China.
Water infiltration into soil is important in geotechnical engineering. The classical Green-Ampt (GA) infiltration model is widely used in soil infiltration due to its physical significance, but it ignores the actual unsaturated layer in the infiltration process and has some deficiencies. Thus, the present study established a modified GA infiltration model (MLGA model) using Darcy's infiltration law and continuity equation to fully consider the variation characteristics of the soil water profile in the infiltration process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!