A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial oil production from acidified glycerol pretreated sugarcane bagasse by . | LitMetric

Microbial oil production from acidified glycerol pretreated sugarcane bagasse by .

RSC Adv

Centre for Tropical Crops and Biocommodities, Queensland University of Technology GPO Box 2432, 2 George St Brisbane QLD 4001 Australia +61 7 3138 4132 +61 7 3138 7792.

Published: January 2019

An integrated microbial oil production process consisting of acidified glycerol pretreatment of sugarcane bagasse, enzymatic hydrolysis, microbial oil production by NRRL 1757 and oil recovery by hydrothermal liquefaction (HTL) of fungal biomass in fermentation broth was assessed in this study. Following pretreatment, the effect of residual pretreatment hydrolysate (containing glycerol) on enzymatic hydrolysis was firstly studied. The residual pretreatment hydrolysate (corresponding to 2.0-7.5% glycerol) improved glucan enzymatic digestibilities by 10-11% compared to the enzymatic hydrolysis in water (no buffer). Although residual pretreatment hydrolysate at 2.0-5.0% glycerol slightly inhibited the consumption of glucose in enzymatic hydrolysate by NRRL 1757, it did not affect microbial oil production due to the consumption of similar amounts of total carbon sources including glycerol. When the cultivation was scaled-up to a 1 L bioreactor, glucose was consumed more rapidly but glycerol assimilation was inhibited. Finally, HTL of fungal biomass in fermentation broth without any catalyst at 340 °C for 60 min efficiently recovered microbial oils from fungal biomass and achieved a bio-oil yield of 78.7% with fatty acids being the dominant oil components (∼89%). HTL also led to the hydrogenation of less saturated fatty acids (C18:2 and C18:3) to more saturated forms (C18:0 and C18:1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059841PMC
http://dx.doi.org/10.1039/c8ra08971jDOI Listing

Publication Analysis

Top Keywords

microbial oil
16
oil production
16
enzymatic hydrolysis
12
fungal biomass
12
residual pretreatment
12
pretreatment hydrolysate
12
acidified glycerol
8
sugarcane bagasse
8
nrrl 1757
8
htl fungal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!