Energy storage materials made from bioresources are crucial to fulfil the need for truly sustainable energy storage. In this work, vanillin, being a lignin-derived molecule, is coupled to chitosan, a biobased polymer backbone, and used as a redox active electrode material. The structure of those electrodes is highly defined, leading to better product security than in lignin based electrodes, which have been presented as sustainable electrodes in the past. With over 60% of saccharide units in chitosan functionalised by vanillin, the concentration of redox functionalities in the copolymer is significantly higher than in lignin materials. Composites with carbon black require no further binders or additives to be used as electrode material and show reversible charge storage up to 80 mA h g (respective to the total electrode material) and good stability. Consequently, these electrodes are amongst the best performing electrodes made from regrown organic matter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060616PMC
http://dx.doi.org/10.1039/c9ra00140aDOI Listing

Publication Analysis

Top Keywords

electrode material
16
energy storage
12
sustainable energy
8
electrodes
5
vanillin decorated
4
decorated chitosan
4
electrode
4
chitosan electrode
4
material
4
material sustainable
4

Similar Publications

Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits.

View Article and Find Full Text PDF

Enabling ultra-flexible inorganic thin-film-based thermoelectric devices by introducing nanoscale titanium layers.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.

View Article and Find Full Text PDF

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A

January 2025

Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.

This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!