In this study, the synchronous effects of time and temperature on the radial structural differences of polyacrylonitrile (PAN) fibres during thermal stabilization were investigated. For each sample to achieve equal densities (∼1.36 g cm), PAN fibres were thermally stabilized for various times between 8-32 min and at corresponding temperatures of 279-252 °C, which was considered to give a synchronous processing adjustment as a time-temperature integral (TTI). Besides, a previously developed mathematic model was utilized to quantitatively evaluate the differences in the radial heterogeneous structures of the stabilized PAN fibres as a function of TTI. It was found that several structural parameters (, the stabilization degrees, the present crystallinities, and the orientation degrees) of PAN chains in the skin regions that mainly determine the fibres' overall performances were dramatically different from those in the core regions. Meanwhile, based on the TTI model, these skin-structure parameters demonstrated a strong correlation with the tensile properties of the resultant carbon fibres. However, while the stabilized PAN fibres had equal densities, their structural parameters, as well as the properties of the resultant carbon fibres, were obviously different.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9066436PMC
http://dx.doi.org/10.1039/d2ra01786eDOI Listing

Publication Analysis

Top Keywords

pan fibres
16
radial structural
8
structural differences
8
differences polyacrylonitrile
8
fibres thermal
8
thermal stabilization
8
synchronous processing
8
processing adjustment
8
time temperature
8
equal densities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!