Anti-corrosion porous RuO/NbC anodes for the electrochemical oxidation of phenol.

RSC Adv

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Shahe Campus Beijing 102206 China

Published: May 2019

Efficient anode materials with porous structures have drawn increasing attention due to their high specific surface area, which can compensate for the slow reaction rate of electrochemical oxidation. However, the use of these materials is often limited due to their poor corrosion resistance. Herein, we report a facile scale-up method, by carbothermal reduction, for the preparation of porous niobium carbide to be used as an anode for the electrochemical oxidation of phenol in water. No niobium ions were detected when the anodes were under aggressive attack by sulfuric acid and under electrochemical corrosion tests with a current density less than 20.98 mA cm. The porous niobium carbide was further modified by applying a ruthenium oxide coating to improve its catalytic activity. The removal rates of phenol and chemical oxygen demand by the RuO/NbC anode reached 1.87 × 10 mg min cm and 6.33 × 10 mg min cm, respectively. The average current efficiency was 85.2%. Thus, an anti-corrosion, highly catalytically active and energy-efficient porous RuO/NbC anode for the degradation of aqueous phenol in wastewater was successfully prepared.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064596PMC
http://dx.doi.org/10.1039/c9ra03353jDOI Listing

Publication Analysis

Top Keywords

electrochemical oxidation
12
porous ruo/nbc
8
oxidation phenol
8
porous niobium
8
niobium carbide
8
ruo/nbc anode
8
anti-corrosion porous
4
ruo/nbc anodes
4
electrochemical
4
anodes electrochemical
4

Similar Publications

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging.

View Article and Find Full Text PDF

Understanding the impact of surface copper valence states on the distribution of electrochemical carbon dioxide products is critical. Herein, CuO@Cu2O with a Cu2+/Cu+ interface was fabricated using wet chemical etching approach. The hollow shape offered a large region for gas adsorption, while the interfacial mixed chemical state of Cu2+/Cu+ with tunable control ratio raised the local density of CHO* and accelerated the carbon-carbon coupling reaction.

View Article and Find Full Text PDF

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!