Low temperature (<500 K) methane steam reforming in an electric field was investigated over various catalysts. To elucidate the factors governing catalytic activity, activity tests and various characterization methods were conducted over various oxides including CeO, NbO, and TaO as supports. Activities of Pd catalysts loaded on these oxides showed the order of CeO > NbO > TaO Surface proton conductivity has a key role for the activation of methane in an electric field. Proton hopping ability on the oxide surface was estimated using electrochemical impedance measurements. Proton transport ability on the oxide surface at 473 K was in the order of CeO > NbO > TaO The OH group amounts on the oxide surface were evaluated by measuring pyridine adsorption with and without HO pretreatment. Results indicate that the surface OH group concentrations on the oxide surface were in the order of CeO > NbO > TaO These results demonstrate that the surface concentrations of OH groups are related to the proton hopping ability on the oxide surface. The concentrations reflect the catalytic activity of low-temperature methane steam reforming in the electric field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055425PMC
http://dx.doi.org/10.1039/d0ra04717aDOI Listing

Publication Analysis

Top Keywords

oxide surface
20
nbo tao
12
ability oxide
12
low temperature
8
methane steam
8
steam reforming
8
surface
8
electric field
8
proton hopping
8
hopping ability
8

Similar Publications

Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.

View Article and Find Full Text PDF

The hypercapnic environment on the International Space Station (ISS): A potential contributing factor to ocular surface symptoms in astronauts.

Life Sci Space Res (Amst)

February 2025

Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States.

With increasing advancements and efforts towards space exploration, there is a pressing need to understand the impacts of spaceflight on astronauts' health. Astronauts have reported signs and symptoms of dry eye disease upon traveling to the International Space Station (ISS), thus necessitating an evaluation of the factors that contribute to the onset of spaceflight associated dry eye disease. Prior literature describes the hypercapnic environment of the ISS; however, the link between the high CO levels and astronauts' symptoms of dry eye disease remains unexplored.

View Article and Find Full Text PDF

Reproductive toxicity and transgenerational effects of co-exposure to polystyrene microplastics and arsenic in zebrafish.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:

Microplastics (MPs) are ubiquitous environmental pollutants that have garnered significant attention due to their small particle size, resistance to degradation and large specific surface area, which makes it easy to adsorb various pollutants, particularly heavy metals. Arsenic (As), a common metal poisons, poses significant risks due to its widespread industrial use. When MPs and As co-exist in the environment, they can exert combined toxic effects on organisms, affecting various systems, including the nervous system.

View Article and Find Full Text PDF

To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.

View Article and Find Full Text PDF

Modulation of electronic spin states in cobalt-based catalysts is an effective strategy for molecule activations. Crystalline-amorphous interfaces often exhibit unique catalytic properties due to disruptions of long-range order and alterations in electronic structure. However, the mechanisms of molecule activation and spin states at interfaces remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!