One-pot HTST synthesis of responsive fluorescent ZnO@apo-enzyme composite microgels for intracellular glucometry.

RSC Adv

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China

Published: July 2020

Responsive fluorescent microgels, that can selectively, reversibly, and rapidly convert the fluctuation in intracellular glucose level into fluorescence signal, have the potential use for intracellular glucometry to promote the understanding of physiology. Herein, we report one-pot synthesis of such a responsive fluorescent composite microgels, which is made of a representative apo-enzyme, apo-glucose oxidase (apo-GOx), interpenetrated in a composite gel network that is comprised of ZnO quantum dots covalently bonded onto crosslinked poly(ethylene glycol) dimethacrylate. The key of this one-pot synthesis is applying a high-temperature short-time heating (HTST) method, so that the naturally dynamic profile of apo-GOx can be maintained and harnessed on the composite microgels to allow the highly selective response to glucose over a glucose concentration range of 0-20 mM. While the composite microgels can undergo volume phase transitions and convert both an increase and a decrease in glucose concentration into fluorescence signal shortly (<1 s), the changes in average hydrodynamic diameter and fluorescence of the composite microgels can be fully reversible even after twenty cycles of adding/removing glucose, indicating a reversible and rapid time response to the glucose concentration variations. With the composite microgels as biosensors, the fluorescence of the composite microgels embedded in the model cancer cells B16F10 can be modulated in response to intracellular glucose level variations, which are derived from a change in glucose concentration in the culture medium by an external supply, or that can be triggered by biochemical reactions (with the β-galactosidase catalysed hydrolysis of lactose as a model reaction for achieving increased glucose levels, and the GOx catalysed oxidation of glucose for achieving decreased glucose levels).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055424PMC
http://dx.doi.org/10.1039/d0ra04339gDOI Listing

Publication Analysis

Top Keywords

composite microgels
16
responsive fluorescent
12
synthesis responsive
8
intracellular glucometry
8
fluorescence signal
8
one-pot synthesis
8
glucose concentration
8
composite
5
microgels
5
one-pot htst
4

Similar Publications

This study investigates the oral processing characteristics and application of soybean fiber and sodium alginate microgel in enhancing the texture and sensory attributes of low-fat yogurt. By combining soybean fiber with sodium alginate, a stable composite microgel system was developed with a uniform particle-size distribution. Oral lubrication performance was assessed by evaluating particle size, texture, friction coefficient and rheological properties, providing insights into how microgels improve food lubricity.

View Article and Find Full Text PDF

This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.

View Article and Find Full Text PDF

Synthesis and characterization of gelatin/chondroitin sulfate microgels with NaCl: Preliminary research toward wound healing applications.

Int J Biol Macromol

December 2024

Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina.

Gelatin and chondroitin sulfate are natural polymers with significant potential in the biomedical field, particularly for wound healing applications. They can form hydrogels that absorb exudates and exhibit anti-inflammatory and antioxidant properties. Silver nanoparticles (AgNPs) can be used as antibacterial agents in wound management.

View Article and Find Full Text PDF

Highly efficient dye adsorption by hierarchical porous SA/PVA/ZIF-8 composite microgels prepared via microfluidics.

Carbohydr Polym

February 2025

Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Hierarchical porous composite microgels (SPZ microgels) were synthesized using microfluidic technology, composed of sodium alginate (SA), polyvinyl alcohol (PVA), and zeolitic imidazolate framework-8 (ZIF-8). The incorporation of ZIF-8 nanoparticles led to the formation of significant porous structures within the microgels, greatly enhancing their dye adsorption performance. Additionally, the diffusion of acetone during the crosslinking reaction resulted in sodium chloride crystal formation, creating a hierarchical porous structure with larger internal porous channels and smaller external channels.

View Article and Find Full Text PDF

The interplay between biomaterials and host immune responses critically determines outcomes in tissue restoration. Recent studies suggest that physicochemical properties of materials can dictate pro-regenerative versus pro-fibrotic responses and have begun to define the key immune cell types and signals governing these divergent effects. This emerging understanding enables the engineering of regenerative biomaterials capable of functional restoration in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!