A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of DNA-Binding Protein-Drug-Binding Sites Using Residue Interaction Networks and Sequence Feature. | LitMetric

Identification of protein-ligand binding sites plays a critical role in drug discovery. However, there is still a lack of targeted drug prediction for DNA-binding proteins. This study aims at the binding sites of DNA-binding proteins and drugs, by mining the residue interaction network features, which can describe the local and global structure of amino acids, combined with sequence feature. The predictor of DNA-binding protein-drug-binding sites is built by employing the Extreme Gradient Boosting (XGBoost) model with random under-sampling. We found that the residue interaction network features can better characterize DNA-binding proteins, and the binding sites with high betweenness value and high closeness value are more likely to interact with drugs. The model shows that the residue interaction network features can be used as an important quantitative indicator of drug-binding sites, and this method achieves high predictive performance for the binding sites of DNA-binding protein-drug. This study will help in drug discovery research for DNA-binding proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065339PMC
http://dx.doi.org/10.3389/fbioe.2022.822392DOI Listing

Publication Analysis

Top Keywords

residue interaction
16
binding sites
16
dna-binding proteins
16
interaction network
12
network features
12
prediction dna-binding
8
dna-binding protein-drug-binding
8
protein-drug-binding sites
8
sequence feature
8
drug discovery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!