Similar Publications

Bismuth oxyselenide (BiOSe) stands as a highly promising layered semiconductor with outstanding optical, electrical, and thermal properties. For the practical application of the material toward the devices, growing BiOSe directly on the amorphous substrate at low temperatures (<400 °C) is essential; however, the negatively charged bottom Se layer originating from alternating stacks of Se and [BiO] has hindered this process. In this work, we report the method for synthesizing a BiOSe film on amorphous alumina (AlO) directly at 350 °C by using chemical solution deposition.

View Article and Find Full Text PDF

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production.

View Article and Find Full Text PDF

A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.

View Article and Find Full Text PDF

Biokinetic soft-sensing using Thiothrix and Ca. Microthrix bacteria to calibrate secondary settling, aeration and NO emission digital twins.

Water Res

January 2025

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; SWING - Department of Built Environment, Oslo Metropolitan University, St Olavs plass 0130, Oslo, Norway. Electronic address:

Climate resilience in water resource recovery facilities (WRRFs) necessitates improved adaptation to shock-loading conditions and mitigating greenhouse gas emission. Data-driven learning methods are widely utilised in soft-sensors for decision support and process optimization due to their simplicity and high predictive accuracy. However, unlike for mechanistic models, transferring machine-learning-based insights across systems is largely infeasible, which limits communication and knowledge sharing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!