A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rational selection of RGB channels for disease classification based on IPPG technology. | LitMetric

Rational selection of RGB channels for disease classification based on IPPG technology.

Biomed Opt Express

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.

Published: April 2022

The green channel is usually selected as the optimal channel for vital signs monitoring in image photoplethysmography (IPPG) technology. However, some controversies arising from the different penetrability of skin tissue in visible light remain unresolved, i.e., making the optical and physiological information carried by the IPPG signals of the RGB channels inconsistent. This study clarifies that the optimal channels for different diseases are different when IPPG technology is used for disease classification. We further verified this conclusion in the classification model of heart disease and diabetes mellitus based on the random forest classification algorithm. The experimental results indicate that the green channel has a considerably excellent performance in classifying heart disease patients and the healthy with an average value of 88.43% and an average value of 93.72%. The optimal channel for classifying diabetes mellitus patients and the healthy is the red channel with an average value of 82.12% and the average value of 89.31%. Due to the limited penetration depth of the blue channel into the skin tissue, the blue channel is not as effective as the green and red channels as a disease classification channel. This investigation is of great significance to the development of IPPG technology and its application in disease classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045892PMC
http://dx.doi.org/10.1364/BOE.451736DOI Listing

Publication Analysis

Top Keywords

disease classification
16
ippg technology
16
rgb channels
8
channels disease
8
channel
8
green channel
8
optimal channel
8
skin tissue
8
heart disease
8
diabetes mellitus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!