Superhydrophobic/superoleophilic materials have shown great potential for applications in oil/water separation. However, practical applications of these materials are restricted due to their toxicity and complicated, expensive, and non-eco-friendly fabrication procedures. Here, we have successfully developed an easy, simple, cost-effective, and environmentally friendly strategy towards the synthesis of superhydrophobic and superoleophilic porous polypyrrole nanotubes. Such wettability has been introduced into polypyrrole by co-doping with sodium dodecylbenzenesulfonate, a surfactant for lowering surface energy and controlling the morphology of the nanotubes. These non toxic and environment friendly polymer nanotubes exhibit oil absorption capability from oil/water mixtures with a reasonable efficiency with good reusability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056729PMC
http://dx.doi.org/10.1039/d0ra06409bDOI Listing

Publication Analysis

Top Keywords

strategy synthesis
8
polypyrrole nanotubes
8
synthesis superhydrophobic/superoleophilic
4
superhydrophobic/superoleophilic non-fluorinated
4
non-fluorinated polypyrrole
4
nanotubes
4
nanotubes oil-water
4
oil-water separation
4
separation superhydrophobic/superoleophilic
4
superhydrophobic/superoleophilic materials
4

Similar Publications

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

Background: Stroke has emerged as an escalating public health challenge among middle-aged and older individuals in China, closely linked to glycolipid metabolic abnormalities. The Hemoglobin A1c/High-Density Lipoprotein Cholesterol (HbA1c/HDL-C) ratio, an integrated marker of glycolipid homeostasis, may serve as a novel predictor of stroke risk.

Methods: Our investigation utilized data from the China Health and Retirement Longitudinal Study cohort (2011-2018).

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!