This paper details a successful synthesis and comparison of a range of tri-metal hydrotalcite-like layered double hydroxides (LDHs) using urea hydrolysis. Transition-metal-substituted MgMAl-LDHs were synthesized with M = Fe, Co, Ni, Cu or Zn. 5 mol% and 10 mol% substitutions were performed, where Mg was substituted with Co, Ni, Cu and Zn, and Al with Fe. The successful synthesis of crystalline MgMAl-LDHs was confirmed using X-ray powder diffraction (XRD) analysis. Energy-dispersive X-ray (EDX) spectroscopy was used to identify substituted metals and determine changes in composition. Changes in morphology were studied using scanning electron microscopy (SEM). Thermogravimetric analysis was used to determine the effect of Fe-, Co-, Ni-, Cu- or Zn-substitution on the thermal degradation of the MgMAl-LDH phase. The structure, morphology and thermal behavior of the LDHs were shown to be influenced by the substituted transition metals. The observed thermal stability took the order MgNiAl- > MgFeAl- = MgAl- ≥ MgCoAl- > MgCuAl- > MgZnAl-LDH. The urea hydrolysis method was shown to be a simple preparation method for well-defined crystallite structures with large hexagonal platelets and good distribution of transition metal atoms in the substituted LDHs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059937PMC
http://dx.doi.org/10.1039/c8ra10165eDOI Listing

Publication Analysis

Top Keywords

urea hydrolysis
12
transition metal
8
layered double
8
double hydroxides
8
hydroxides ldhs
8
successful synthesis
8
comparison transition
4
metal tri-metal
4
tri-metal layered
4
ldhs
4

Similar Publications

Lipases are one of the ubiquitous enzymes that belong to the hydrolases family and have a wide variety of applications. Cold-active lipases are of major attraction as they can act in lower temperatures and low water conditions because of their inherent greater flexibility. One of the novel applications of lipase is the enrichment of ω-3 polyunsaturated fatty acids (PUFA) in plant and fish oils.

View Article and Find Full Text PDF

Nitrogen (N) transformation inhibitors have been widely recognized as a promising strategy to enhance crop productivity and mitigate N losses. However, the effectiveness of individual or combined inhibitors can vary significantly across different agroecosystems. Using meta-analysis and cost-benefit analysis (CBA), we synthesized findings from 41 peer-reviewed studies (285 observations) globally to evaluate the efficacy of urease inhibitors (UIs), nitrification inhibitors (NIs), and combined inhibitors (UINIs).

View Article and Find Full Text PDF

A two-step method for the synthesis of C/Ni/N nanocomposites based on hydrolysis lignin from wood chemical processing waste is proposed. These nanocomposites were found to have a well-developed porous structure with a wide pore size distribution. It was shown that doping hydrolysis lignin with urea-derived nitrogen leads to the appearance of ferromagnetic behavior in the carbon material.

View Article and Find Full Text PDF

Introduction: Carboxypeptidase, a member of the metallopeptidase M32 family, catalyses the C-terminal hydrolysis of a variety of peptides and proteins in the presence of metal ions.

Objective: To characterize Leishmania donovani carboxypeptidase (LdCP) in miltefosine (MIL) drug-resistant parasites.

Methods: We performed the MTT assay and cell cycle analysis to confirm the MIL resistance of clinical isolates.

View Article and Find Full Text PDF

Curious effects of overlooked aspects on urease activity.

Colloids Surf B Biointerfaces

December 2024

Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy. Electronic address:

Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!