The effect of molecular flexibility on the rheological and filtration properties of synthetic polymers used as fluid loss additives in water-based drilling fluid was investigated. A new synthetic polymer (PAANS) comprising acrylamide (AM), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), -vinyl-2-pyrrolidone (NVP) and potassium 2,5-dihydroxybenzenesulfonate (DHBS) was synthesized, in which phenyl groups were introduced in the backbone. Two other comparative polymers, PAAN and PAANS, were also prepared following the same synthesis procedure. PAAN comprises AM, AMPS and NVP, while PAANS consists of AM, AMPS, NVP and sodium 4-styrenesulfonate (SSS). PAAN, PAAND and PAANS were characterized by H NMR and elemental analysis, and the molecular weight was determined by static light scattering (SLS). The rheological properties, filtration properties and performance sustainability were investigated. Using a rheological properties measurement test, the apparent viscosity (AV), plastic viscosity (PV) and yield point (YP) of the Na-MMT/PAAND system at a concentration of 2.0% were 18.0 mP s, 12.0 mP s and 6.0 Pa, respectively, after a thermal aging test at 240 °C for 16 h. These values are much higher than those of the corresponding Na-MMT/PAAN and Na-MMT/PAANS systems. The API filtration loss volume (FL) and high-temperature/high-pressure filtrate volume (FL) of the Na-MMT/PAAND system at a concentration of 2.0% were 12.0 mL and 30.0 mL, respectively, after a thermal aging test at 240 °C for 16 h. These values are much lower than those of the Na-MMT/PAAN and Na-MMT/PAANS systems. Compared with PAAN and PAANS, PAAND presents the best performance sustainability after multiple shearing and thermal aging tests. At the same temperature, the order of maintaining rheological performance and controlling the FL and FL was PAAND > PAANS > PAAN in Na-MMT/PAANS-based drilling fluid at high temperature. Increasing the percentage of rigid monomers in the backbone was found to be conducive to maintaining the rheological stability and improving the filtration properties at high temperature. The control mechanism of fluid loss was investigated through adsorption tests using the method of thermal filtration, assessing particle size distribution on a laser diffraction particle size analyzer (LPSA) and examining filter cake morphologies using an environmental scanning electron microscope (ESEM). The results reveal that the introduction of rigid monomers into the synthetic polymer backbone can effectively improve the adsorption capacity of the polymer on the clay surface, obstruct the aggregation of clay particles, and improve the quality of filter cakes at high temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061758PMC
http://dx.doi.org/10.1039/c9ra00038kDOI Listing

Publication Analysis

Top Keywords

filtration properties
16
fluid loss
12
drilling fluid
12
thermal aging
12
molecular flexibility
8
flexibility rheological
8
rheological filtration
8
properties synthetic
8
synthetic polymers
8
polymers fluid
8

Similar Publications

Remarkable improvement in drilling fluid properties with graphitic-carbon nitride for enhanced wellbore stability.

Heliyon

January 2025

Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.

This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.

View Article and Find Full Text PDF

Loading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

Particle filtration efficiency (PFE) is a critical property of face masks, with the most common test methods using sodium chloride as a challenge aerosol. In the absence of bottom-up uncertainty budgets for PFE, interlaboratory comparisons provide an alternative route to robustly quantify the precision and bias of the method. This work presents the results of several interlaboratory comparisons of particle filtration efficiency performed across a network of laboratories.

View Article and Find Full Text PDF

Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!