This study marks the first ever attempt at the successful fabrication of a novel reactive membrane to combat fouling through layer-by-layer (LBL) surface modification with polyelectrolyte (PE), followed by anisotropic triangular silver nanoparticles (TSNP). The morphology and the presence of TSNP on the membrane was confirmed by HR-TEM, FE-SEM and XPS. The charge density of the novel membrane (PE-TSNP) was increased 15.6 fold, as a result of the sharp-tip morphology of the TSNP forming tip-based "hot spots" on the membrane surface and high-atom-density active facets, which also enhanced the membrane hydrophilicity by 36%. Owing to these improved features, the novel membrane displayed remarkable antibacterial and anti-adhesion properties by achieving 100% bactericidal effect against high initial bacterial concentration (10 CFU mL). The membrane flux was improved by 31% while retaining a high flux recovery rate of 98.2% against biofouling. The membrane also mitigated organic and bio-organic fouling by maintaining high flux recovery rates of 96% and 95% respectively. As compared with a spherical silver nanoparticle modified membrane (PE-SSNP), the PE-TSNP membrane was 25.7% more hydrophilic and achieved 10% higher bacterial killing. Moreover, the novel membrane displayed 9.5%, 11.6%, and 14% higher flux recovery rates than that of the PE-SSNP membrane against biofouling, organic and bio-organic fouling respectively. Furthermore, the novel membrane retained a long-term biocidal capability of 93% even after 4 months of successive tests. ICP-MS revealed silver ion leaching of 4 μg L and the total silver loss of 14% from the PE-TSNP membrane after 14 days.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9061076 | PMC |
http://dx.doi.org/10.1039/c8ra10540e | DOI Listing |
Anal Bioanal Chem
January 2025
Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden.
Free fatty acids (FFAs) are important energy sources and significant for energy transport in the body. They also play a crucial role in cellular oxidative stress responses, following cell membrane depolarization, making accurate quantification of FFAs essential. This study presents a novel supercritical fluid chromatography-mass spectrometry (SFC-MS) method using selected ion recording in negative electrospray ionization mode, enabling rapid quantification of 31 FFAs within 6 min without derivatization.
View Article and Find Full Text PDFNat Chem
January 2025
Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.
View Article and Find Full Text PDFSci Rep
January 2025
Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
January 2025
The Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
The structural integrity of the lips is essential for both aesthetic appeal and oral functionality. Defects in this region, which may arise from a variety of causes, can significantly affect a patient's physical and psychological well-being. This case report introduces a novel surgical technique designed for the repair of substantial defects in the lower lip.
View Article and Find Full Text PDFCancer Lett
January 2025
School of Life Sciences, Peking University Third Hospital Cancer Center, Center for Life Sciences, State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Peking Union Medical College Hospital, Beijing, 100730, China. Electronic address:
It has become increasingly recognized that neural signals can profoundly influence the prognosis of various cancer types. In the past years, we have witnessed "cancer neuroscience," which primarily focuses on the complex crosstalk between tumors and neural signals, emerging as a new, multidisciplinary direction of biomedical science. This review aims to summarize the current knowledge of this research frontier, with an emphasis on the neuroimmune mechanisms enacted through the reciprocal interactions between tumors and the central or peripheral nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!