Considering the harmfulness of nitrogen dioxide (NO), it is important to develop NO sensors with high responses and low limits of detection. In this study, we synthesize a novel SnO-SnO heterostructure through a one-step solvothermal method, which is used for the first time as an NO sensor. The material exhibits three-dimensional flower-like microparticles assembled by two-dimensional nanosheets, -formed SnO-SnO heterostructures, and large specific surface area. Gas sensing measurements show that the responses of the SnO-SnO heterostructure to 500 ppb NO are as high as 657.4 and 63.4 while its limits of detection are as low as 2.5 and 10 parts per billion at 75 °C and ambient temperature, respectively. In addition, the SnO-SnO heterostructure has an excellent selectivity to NO, even if exposed to mixture gases containing interferential part with high concentration. The superior sensing properties can be attributed to the formation of SnO-SnO p-n heterojunctions and large specific surface area. Therefore, the SnO-SnO heterostructure having excellent NO sensing performances is very promising for applications as an NO sensor or alarm operated at a low operating temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056288 | PMC |
http://dx.doi.org/10.1039/d0ra05576j | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Jakkur, Bangalore, INDIA.
BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.
Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.
View Article and Find Full Text PDFNat Commun
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China.
Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (HO*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes.
View Article and Find Full Text PDFNat Commun
January 2025
School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!