The green synthesis of nanoparticles (NPs) is important because of the favorable potential of plant biomolecules involved in the synthesis of NPs. This study aimed to provide a fast, easy, cheap, and environmentally friendly method for the synthesis of superparamagnetic iron oxide NPs (SPIONP) and silver nanoparticles (AgNPs) using and an evaluation of their use as antifungal agents against and . The physicochemical properties of AgNPs and SPIONPs were studied using FESEM, HRTEM, XRD, VSM, UV-Vis, and EDX spectroscopy. The sizes and morphologies of the AgNPs and SPIONPs, measured electron microscopy, were 12.57 nm and 10.70 nm, respectively. Nanoparticles have previously been shown to have antifungal activities, and SPIONPs and AgNPs can show antifungal resistance. These NPs can be used as a substitute for widely used toxic fungicides to promote food safety and public health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056177 | PMC |
http://dx.doi.org/10.1039/d0ra04071a | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.
View Article and Find Full Text PDFBiofilm
June 2025
Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
The biofilm formation of , a major human fungal pathogen, represents a crucial virulence factor during candidiasis. Eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, has emerged as a potential antibiofilm agent against . .
View Article and Find Full Text PDFJ Struct Biol X
June 2025
Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy.
Siderophore-mediated iron acquisition is essential for the virulence of , a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in .
View Article and Find Full Text PDFChirality
February 2025
Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Iasi, Romania.
Chirality plays a crucial role in the pharmacological activity of triazoles, a key scaffold in antifungal agents and various therapeutic applications. This study focuses on optimizing the enantiomeric resolution of chiral triazoles using supercritical fluid chromatography (SFC) and 10 different columns, either immobilized or coated, chlorinated or nonchlorinated, cellulose or amylose-based chiral stationary phases (CSPs). Four novel triazoles and two marketed ones (tebuconazole and hexaconazole) were separated to determine optimal resolution conditions.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Department of Chemistry, Constituent Govt. College, (MJP. Rohilkhand University Bareilly) Hasanpur, (UP), 244241, India.
Introduction: Quinazoline holds significant importance in pharmaceutical chemistry, which is included in a range of drugs, clinical contenders, and bioactive compounds. N-contain-ing heterocyclic compounds of quinazoline have a wide and distinct range of biopharmaceutical activities.
Methods: A series of newly synthesized heterocyclic compounds, namely, N-(4-substituted ben-zylidene)-2-(2-aminothiazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a'-3e') and N-(4-substi-tuted benzylidene)-2-(2-aminooxazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a-3e), were synthesized starting from 6-methylquinazolin-3(4H)-amine and 4-substituted benzaldehyde and their antibacterial and antifungal properties were evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!