Insulin rapidly fibrillates in the presence of amyloid seeds from different sources. To address its cross-reactivity we chose the seeds of seven model proteins and peptides along with the seeds of insulin itself. Model candidates were selected/designed according to their size, amino acid sequence, and hydrophobicity. We found while some seeds provided catalytic ends for inducing the formation of non-native insulin conformers and increase fibrillation, others attenuated insulin fibrillation kinetics. We also observed competition between the intermediate insulin conformers which formed with urea and amyloid seeds in entering the fibrillogenic pathway. Simultaneous incubation of insulin with urea and amyloid seeds resulted in the formation of nearly similar insulin intermediate conformers which synergistically enhance insulin fibrillation kinetics. Given these results, it is highly likely that, structurally, there is a specific intermediate in different pathways of insulin fibrillation that governs fibrillation kinetics and morphology of the final mature fibril. Overall, this study provides a novel mechanistic insight into insulin fibrillation and gives new information on how seeds of different proteins are capable of altering insulin fibrillation kinetics and morphology. This report, for the first time, tries to answer an important question that why fibrillation of insulin is either accelerated or attenuated in the presence of amyloid fibril seeds from different sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056291PMC
http://dx.doi.org/10.1039/d0ra05414cDOI Listing

Publication Analysis

Top Keywords

insulin fibrillation
24
fibrillation kinetics
16
insulin
13
amyloid seeds
12
fibrillation
9
presence amyloid
8
seeds
8
seeds sources
8
insulin conformers
8
urea amyloid
8

Similar Publications

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ~55 kDa N- and C- domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

The association of the triglyceride-glucose index with the risk of atrial fibrillation: Analysis of the UK Biobank.

Nutr Metab Cardiovasc Dis

December 2024

Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Cardiovascular Disease, 167, Beilishi Road, Xicheng District, Beijing, 100037, China. Electronic address:

Background And Aims: The relationship between the triglyceride-glucose (TyG) index and the incidence of atrial fibrillation (AF) remains insufficiently explored. This investigation aims to elucidate the association between the TyG index and the long-term risk of developing AF.

Methods And Results: This cohort study analyzed data from 409,705 participants sourced from the UK Biobank database.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

Aims: Glucosamine, a widely used dietary supplement, has been linked to potential cardiovascular risks, including atrial fibrillation (AF). This study aimed to investigate the effects of long-term glucosamine supplementation on AF susceptibility and the underlying mechanisms.

Materials And Methods: C57BL/6 J mice were treated with low-dose (15 mg/kg/day) or high-dose (250 mg/kg/day) glucosamine via drinking water for 6 weeks.

View Article and Find Full Text PDF

Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!