Lithium-sulfur (Li-S) batteries with their outstanding theoretical energy density are strongly considered to take over the post-lithium ion battery era; however, they are limited by sluggish reaction kinetics and the severe shuttling of soluble lithium polysulfides. Prussian blue analogues (PBs) have demonstrated their efficiency in hindering the shuttle effects as host materials of sulfur; unfortunately, they show an inferior electronic conductivity, exhibiting considerable lifespan but poor rate performance. Herein, we rationally designed a PB@reduced graphene oxide as the host material for sulfur (S@PB@rGO) hybrids a facile liquid diffusion and physical absorption method, in which the sulfur was integrated into NaCo[Fe(CN)] and rGO framework. When employed as a cathode, the as-prepared hybrid exhibited excellent rate ability (719 mA h g at 1C) and cycle stability (918 mA h g at 0.5C after 100 cycles). The improved electrochemical performance was attributed to the synergetic effect of PB and conductive rGO, which not only enhanced the physisorption of polysulfides but also provided a conductive skeleton to ensure rapid charge transfer kinetics, achieving high energy/power outputs and considerable lifespan simultaneously. This study may offer a new method manufacturing high performance Li-S batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056563PMC
http://dx.doi.org/10.1039/d0ra04901hDOI Listing

Publication Analysis

Top Keywords

prussian blue
8
graphene oxide
8
li-s batteries
8
considerable lifespan
8
blue coated
4
coated reduced
4
reduced graphene
4
oxide high-performance
4
high-performance cathode
4
cathode lithium-sulfur
4

Similar Publications

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

Biosensors (Basel)

January 2025

University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.

Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs) as cathode material for sodium-ion batteries have attracted widespread attention due to their affordability, simple synthesis, and high theoretical capacity. Nevertheless, the oxidation of Fe and sodium loss lead to poor electrochemical properties which restrict the practical use of PBAs. Herein, a simple coprecipitation approach based on sodium salt-reduction-assisted synthesis was proposed to construct high-sodium PBAs.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is a chronic and recurrent digestive tract disease that can lead to significant morbidity and mortality. The pathogenesis of UC is intricately associated with the presence of reactive oxygen species (ROS). Prussian blue (PB), an inorganic nanozyme with potent antioxidant properties, has been extensively applied in the treatment of various inflammatory conditions and tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!