Bio-derived lipophilic polydentate chelators have been synthesized and tested for their chelating ability using a range of metal salts of Cu, Co, Ni, Fe, and Cr. These novel molecules were produced by the Michael addition reaction of 14,16-hentriacontanedione, isolated from wheat straw wax, with methyl acrylate or bio-derived dimethyl itaconate microwave heating. The Michael adducts could either be used directly as esters or be hydrolysed to their acid form. Critically, the creation of additional binding sites the carboxylate moieties leads to an enhanced metal uptake over both a non-renewable commercially available lipophilic β-diketone (dibenzoylmethane) and the unmodified hentriacontane-14,16-dione, for the chelation of Fe(iii), Cr(iii) and Ni(ii). The modified β-diketone containing a single carboxylic acid functionality was able to extract 167 mg L of Fe(iii) from an FeCl solution with no pH adjustment. In comparison, no chelation was observed with dibenzoylmethane, while unmodified hentriacontane-14,16-dione was able to extract 81 mg L. The modified chelators containing one and two ester carboxylates extracted 255 and 305 mg L Cr(iii) from a solution of CrCl at pH 5-6, 238 mg L was extracted by the unmodified β-diketone whilst no extraction was observed using dibenzoylmethane. This suggest some minor contribution or positive effect to chelation due to neighbouring ester groups. The chelator containing two carboxylic acid groups (tetra-dentate when combined with the diketone) was the most proficient in this study for removal of Ni from an NiCl solution (140 mg L). It was also found that at higher pH almost quantitative extraction was achieved using the polydentate chelators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060256PMC
http://dx.doi.org/10.1039/c8ra09426hDOI Listing

Publication Analysis

Top Keywords

wheat straw
8
straw wax
8
enhanced metal
8
polydentate chelators
8
dibenzoylmethane unmodified
8
unmodified hentriacontane-1416-dione
8
carboxylic acid
8
observed dibenzoylmethane
8
modification bio-based
4
β-diketone
4

Similar Publications

Deep eutectic solvent-enabled lignocellulosic biomass valorization: Toward understanding of biomass pretreatment, lignin dissolution, and lignin's antioxidant activity.

Int J Biol Macromol

January 2025

State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:

A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

Valorization of wheat straw through enhancement of cellulose accessibility, xylan elimination and lignin removal by choline chloride:p-toluenesulfonic acid pretreatment.

Int J Biol Macromol

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:

Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.

View Article and Find Full Text PDF

Phenotypic Profiling of Selected Cellulolytic Strains to Develop a Crop Residue-Decomposing Bacterial Consortium.

Microorganisms

January 2025

Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania.

Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!