P25 comprising of mixed anatase and rutile phases is known to be highly photocatalytically active compared to the individual phases. Using a facile wet chemical method, we demonstrate a ternary nanocomposite consisting of Ni and Ag nanoparticles, decorated on the surface of XTiO (X: P25, rutile (R)) as an efficient visible-light-driven photocatalyst. Contrary to the current perspective, RTiO-based Ni-Ag-RTiO shows the highest activity with the H evolution rate of ∼86 μmol g W h@535 nm. Together with quantitative assessment of active Ni, Ag and XTiO in these ternary systems using high energy synchrotron X-ray diffraction, transmission electron microscopy coupled energy dispersive spectroscopy mapping evidences the metal to semiconductor contact Ag. The robust photocatalytic activity is attributed to the improved visible light absorption, as noted by the observed band edge of ∼2.67 eV corroborating well with the occurrence of Ti in Ti 2p XPS. The effective charge separation due to intimate contact between Ni and RTiO Ag is further evidenced by the plasmon loss peak in Ag 3d XPS. Moreover, density functional theory calculations revealed enhanced adsorption of H on TiO clusters when both Ag and Ni are simultaneously present, owing to the hybridization of the metal atoms with d orbitals of Ti and p orbitals of O leading to enhanced bonding characteristics, as substantiated by the density of states. Additionally, the variation in the electronegativity in Bader charge analysis indicates the possibility of hydrogen evolution at the Ni sites, in agreement with the experimental observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057027PMC
http://dx.doi.org/10.1039/d0ra07078eDOI Listing

Publication Analysis

Top Keywords

ternary nanocomposite
8
efficient visible-light-driven
8
photocatalytic activity
8
synergistic ni-ag-rutile
4
ni-ag-rutile tio
4
tio ternary
4
nanocomposite efficient
4
visible-light-driven photocatalytic
4
activity p25
4
p25 comprising
4

Similar Publications

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

Promethazine hydrochloride (PMHC) is a vital drug that is used as an anticholinergic, antipsychotic, antihistaminic, analgesic, sedative, and neuroleptic. However, the overdosage of PMHC also causes reproductive variations, cardiac changes, hypotension, and endocrinal variations. Hence, the detection of PMHC is crucial.

View Article and Find Full Text PDF

This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.

View Article and Find Full Text PDF

Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.

Biosensors (Basel)

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.

View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!