Black aluminium thin films were prepared by direct current (DC) pulsed magnetron sputtering. The N concentration in the Ar-N mixture that was used as the deposition atmosphere was varied from 0 to 10%, and its impact on the film growth and optical properties was studied. A strong change in the film growth process was observed as a function of the N concentration. At a specific N concentration of ∼6%, the Al film growth process favoured the formation of a moth-eye-like antireflective surface. This surface morphology, which was similar to the structure of a cauliflower, is known to trap incident light, resulting in films with a very low reflectivity. A diffuse reflectivity lower than 4% was reached in the ultraviolet-visible-near infrared (UV-VIS-NIR) spectral range that corresponds to a value observed for an ultrahigh absorber. We found that for the preparation of black aluminium, the nitrogen content plays an important role in film formation and the resulting film morphology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054304 | PMC |
http://dx.doi.org/10.1039/d0ra00866d | DOI Listing |
Nutrients
December 2024
Toxicology Area, University of La Laguna, Tenerife, Canary Islands, 38071 La Laguna, Spain.
Soybeans are a widely consumed legume, essential in Western diets and especially prominent in vegan and vegetarian nutrition. However, environmental contamination from anthropogenic sources, such as industrial emissions, wastewater, and pesticide use, has led to the accumulation of non-essential and toxic elements in legumes, potentially impacting human health. This study quantified the levels of 11 potential toxic elements (Al, B, Ba, Cd, Co, Cr, Li, Ni, Pb, Sr, V) in 90 samples of four soybean species (, , , ) using inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFMed Phys
January 2025
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed.
View Article and Find Full Text PDFJ Med Case Rep
December 2024
Department of Internal Medicine, Woldia Comprehensive Specialized Hospital, Woldia, Ethiopia.
Introduction: Aluminum phosphide is a cheap and commonly used rodenticide that is also an effective solid fumigant and frequently used for grain preservation. The pill contains around 44% inert elements (ammonium carbonate) to avoid disintegration of the tablet, while the rest (about 56%) is aluminum phosphide. Because it is freely available on the market, it is one of the commonly used agents for self-poisoning in different parts of the developing world.
View Article and Find Full Text PDFWaste Manag
December 2024
National Engineering Research Center of Green Recycling for Strategic Metal Resources, Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Institute of Process Engineering, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Recycling of spent lithium-ion batteries has attracted worldwide attention to ensure sustainability of electric vehicle industry. Pretreatment as an essential step for recycling of spent LIBs is critical to ensure the recovery efficiency and quality of black mass which is used for further materials regeneration. Usually, high temperature pyrolysis, at around 600 °C is required during the pretreatment to achieve effective separation of the black mass that is binding on aluminium foils with polyvinylidene fluoride binder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!