Recently, more attention has been paid to the use of microwave (MW) energy in accelerating chemical reactions. The effect of microwave energy on the reduction of zinc oxide and zinc ferrite was investigated. The results indicated that the temperatures required to initiate zinc oxide and zinc ferrite reduction under MW heating were 550 and 450 °C, respectively, while under conventional thermal (CT) heating, were 950 and 850 °C, respectively. Apparently, the MW reaction had a negative standard Gibbs free energy (Δ) at a lower temperature (∼400 °C) when compared to the CT reaction. Additionally, the activation energy ( ) substantially decreased from 223.7 and 221.1 kJ mol under CT heating to 64.8 and 32.9 kJ mol under MW heating for Zn oxide and zinc ferrite, respectively. The enhancement in zinc reduction under MW energy was due to the rapid and bulk heating phenomena of MWs as well as the interactions occurring between the electromagnetic MW pattern and the molecules of heated materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055094PMC
http://dx.doi.org/10.1039/d0ra04574hDOI Listing

Publication Analysis

Top Keywords

oxide zinc
16
zinc ferrite
16
zinc oxide
12
microwave energy
12
zinc
8
reduction zinc
8
activation energy
8
mol heating
8
energy
7
heating
5

Similar Publications

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.

View Article and Find Full Text PDF

Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1.

View Article and Find Full Text PDF

There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!