A novel synthesis of furocoumarins was developed by a reaction between oxime esters and 4-hydroxycoumarins. The reaction was proposed to undergo radical mechanism mediated by iodine, a cheap and common laboratory reagent. Mechanistic studies showed the key for the successful transformation was the presence of α-iodoimine intermediate which facilitated the ring-closing step. The developed conditions produced good functional group tolerance with a wide range of high-profile furocoumarin product. The potential for this strategy to be applied in other syntheses of heterocyclic compounds is highly achievable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9058646 | PMC |
http://dx.doi.org/10.1039/d0ra07566c | DOI Listing |
Chem Asian J
January 2025
IICT CSIR: Indian Institute of Chemical Technology, Organic Synthesis & Process Chemistry, Tarnaka, 500007, Hyderabad, INDIA.
A ferrocene-catalyzed cyanoalkylsulfonylative radical cascade cyclization of aryl 1,6-diynes using cycloketone oxime esters and DABCO.(SO₂)₂ (DABSO) is reported. The reaction proceeds with notable chemo- and regioselectivity, without requiring additional oxidants or reductants.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
As marine equipment advances from shallow to deep-sea environments, the demand for high-performance antifouling materials continues to increase. The lionfish, a species inhabiting both deep-sea and shallow coral reefs, prevents fouling organism adhesion via its smooth, mucus-covered skin, which contains antimicrobial peptides. Inspired by lionfish skin, this work integrates zwitterionic segments with hydration-based fouling-release properties and the furan oxime ester structure with intrinsic antibacterial activity to develop a silicone-based antifouling coating capable of operating from shallow to deep-sea environments.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Northeast Normal University, Changchun 130024, China.
ConspectusIn the past decade, single-atom skeletal editing, which involves the precise insertion, deletion, or exchange of single atoms in the core skeleton of a molecule, has emerged as a promising synthetic strategy for the rapid construction or diversification of complex molecules without laborious synthetic processes. Among them, carbene-initiated skeletal editing is particularly appealing due to the ready availability and diverse reactivities of carbene species. The initial endeavors to modify the core skeleton of heteroarenes through carbon-atom insertion could date back to 1881, when Ciamician and Denstedt described the conversion of pyrroles to pyridines by trapping haloform-derived free carbene.
View Article and Find Full Text PDFBioorg Med Chem
November 2024
Guangxi University of Chinese Medicine, Nanning 530001, China. Electronic address:
In this work, a series of novel Pterostilbene-oxime ether-carboxylic acid (POC) derivatives (d1-d10, e1-e10 and 1-13) were designed, synthesized, and characterized by spectroscopic techniques. In order to further determine the absolute configuration of these compounds, one of them, compound d3, was investigated by X-ray single crystal diffraction method. d3 had a triclinic crystal with P-1 space group, and its CHCH and CHN was confirmed as E configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!