Neurodegenerative changes in the preclinical stage of Alzheimer's disease (AD) have recently been the focus of attention because they may present a range of treatment opportunities. A total of 134 elderly volunteers who lived in a local community were investigated and grouped into preclinical and mild cognitive impairment stages according to the Clinical Dementia Rating test; we also estimated amyloid deposition in the brain using positron emission tomography (PET). A significant interaction between clinical stage and amyloid PET positivity on cerebral atrophy was observed in the bilateral parietal lobe, parahippocampal gyri, hippocampus, fusiform gyrus, and right superior and middle temporal gyri, as previously reported. Early AD-specific voxel of interest (VOI) analysis was also applied and averaged Z-scores in the right, left, bilateral, and right minus left medial temporal early AD specific area were computed. We defined these averaged Z-scores in the right, left, bilateral, and right minus left early AD specific VOI in medial temporal area as R-MedT-Atrophy-score, L-MedT-Atrophy-score, Bil-MedT-Atrophy-score, and R_L-MedT-Atrophy-score, respectively. It revealed that the R_L-MedT-Atrophy-scores were significantly larger in the amyloid-positive than in the amyloid-negative cognitively normal (CN) elderly group, that is, the right medial temporal areas were smaller than left in amyloid positive CN group and these left-right differences were significantly larger in amyloid positive than amyloid negative CN elderly group. The L-MedT-Atrophy-score was slightly larger ( = 0.073), that is, the left medial temporal area was smaller in the amyloid-negative CN group than in the amyloid-positive CN group. Conclusively, the left medial temporal area could be larger in CN participants with amyloid deposition than in those without amyloid deposition. The area under the receiver operating characteristic curve for differentiating amyloid positivity among CN participants using the R_L-MedT-Atrophy-scores was 0.73; the sensitivity and specificity were 0.828 and 0.606, respectively. Although not significant, a negative correlation was observed between the composite cerebral standardized uptake value ratio in amyloid PET images and L-MedT-Atrophy-score in CN group. The left medial temporal volume might become enlarged because of compensatory effects against AD pathology occurring at the beginning of the amyloid deposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063485PMC
http://dx.doi.org/10.3389/fnagi.2022.847094DOI Listing

Publication Analysis

Top Keywords

medial temporal
28
left medial
20
amyloid deposition
20
temporal area
12
amyloid
11
left
9
temporal
8
temporal areas
8
preclinical stage
8
amyloid pet
8

Similar Publications

Background: Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. With the continuous development of neuromodulation technology, Repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as a potential non-invasive treatment for ADHD. However, there is a lack of research on the mechanism of rTMS for ADHD.

View Article and Find Full Text PDF

Although the medial temporal lobe (MTL) is traditionally considered a region dedicated to long-term memory, recent neuroimaging and intracranial recording evidence suggests that the MTL also contributes to certain aspects of visual short-term memory (VSTM), such as the quality or precision of retained VSTM content. This study aims to further investigate the MTL's role in VSTM precision through the application of transcranial direct current stimulation (tDCS) and functional magnetic resonance imaging (fMRI). Participants underwent 1.

View Article and Find Full Text PDF

Effects of Electroconvulsive Therapy on Brain Structure - a Neuroradiological Investigation into White Matter Hyperintensities, Atrophy, and Microbleeds.

Biol Psychiatry Cogn Neurosci Neuroimaging

December 2024

Department of Clinical Medicine, University of Bergen, Bergen, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.

Background: Electroconvulsive therapy (ECT) is a well-established treatment for severe depression, yet it remains stigmatized due to public perceptions linking it with brain injury. Despite extensive research, the neurobiological mechanisms underlying ECT are not fully elucidated. Recent findings suggest that ECT may work through disrupting depression circuitry.

View Article and Find Full Text PDF

Arousal effects on oscillatory dynamics in the non-human primate brain.

Cereb Cortex

December 2024

School of Medicine, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States.

Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated.

View Article and Find Full Text PDF

Divergent neurodegenerative patterns: Comparison of [F] fluorodeoxyglucose-PET- and MRI-based Alzheimer's disease subtypes.

Brain Commun

November 2024

Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden.

[F] fluorodeoxyglucose (FDG)-PET and MRI are key imaging markers for neurodegeneration in Alzheimer's disease. It has been well established that parieto-temporal hypometabolism on FDG-PET is closely associated with medial temporal atrophy on MRI in Alzheimer's disease. Substantial biological heterogeneity, expressed as distinct subtypes of hypometabolism or atrophy patterns, has been previously described in Alzheimer's disease using data-driven and hypothesis-driven methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!